Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2021 Vol.40 No.5

De novo Transcriptome and Tissues-Specific Expression Analysis of Prionailurus bengalensis
Author of the article:JIANG Lan1#, ZHANG Xueyan1#, WANG Junyin2, LI Jing1*
Author's Workplace:1. Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
2. Mount Emei Scenic Area Management Committee, Mount Emei Biodiversity Conservation Institute, Emeishan, Sichuan Province 614200, China
Key Words:Prionailurus bengalensis; transcriptome; de novo assembly; tissue-specific expression
Abstract:The leopard cat (Prionailurus bengalensis) is one of the most widespread Asian carnivores, and it is listed as class Ⅱ nationally key protected wild animals in China databas. In this study, RNA-Seq was performed on 6 tissues (cerebrum, heart, kidney, liver, lung and skeletal muscle) of leopard cat and 51.4 Gb raw data was obtained.De novo assembly by Trinity software obtained a high-quality assembly including 369 246 transcripts with an average length of 1 465 bp, and Contig N50 has a length of 2 660 bp. Annotation results showed that approximately 42.44% (114 517) of the transcripts were aligned in 4 publices. KEGG pathway prediction revealed that 65 895 transcripts were assigned to 386 KEGG pathways. According to the expression quantity of transcripts, the expression profiles of 6 tissues were constructed, and the tissue-specific index (TSI) was calculated. The results showed that 39.65% of the transcripts (0.15 ≤ TSI ≤ 0.85) had medium tissue specificity, and 60.34% of the transcripts (TSI>0.85) had high tissue specificity. A total of 39 transcripts were obtained from the top 10 transcripts with the highest FPKM value in each tissue, and 26 of them were highly tissue-specific (TSI>0.85).
2021,40(5): 497-508 收稿日期:2021-04-06
高笑宇. 2015. 胸腺素β4对小鼠毛发生长的影响及其作用机制[D]. 呼和浩特:内蒙古大学.
何文耀, 范嗣刚, 刘宝锁, 等. 2018. 合浦珠母贝胸腺素β4(thymosin beta4)插核损伤和发育时期的表达研究[J]. 南方水产科学, 14(2):66-74.
何正春, 彭芳, 宋丽艳, 等. 2007. 美洲大蠊化学成分及药理作用研究进展[J]. 中国中药杂志, 32(21):2326-2331.
江乐文, 丁伟佳, 江敏君. 2020. 低能量强脉冲光影响C57BL/6小鼠毛发生长的实验研究[J]. 中外医学研究, 18(18):10-12.
李晔, 包旭, 陈曦, 等. 2014. 小鼠毛囊再生与胸腺素β4的促进效应[J]. 中国组织工程研究, 18(11):1687-1693.
马艺欣. 2017. Thymosin-β4在非小细胞肺癌中的表达及临床相关性研究[D]. 山东:大连医科大学.
王飞, 徐刚, 周林平. 2011. 康复新联合奥曲肽治疗消化道肿瘤介入治疗后的黏膜损伤18例[J]. 中国中西医结合消化杂志, 19(2):125-126.
王婷, 邢海权, 曹靖, 等. 2013. IGF-1对羊驼皮肤成纤维细胞作用的研究[J]. 畜牧兽医学报, 44(6):880-887.
邢喆, 屠军波, 杨壮群. 2004. 毛囊体外研究现状[J]. 中国美容医学, 13(5):626-628.
于虎, 张国新, 李艳, 等. 2011. 重组Tβ4调节bFGF和TNF-α表达促进糖尿病大鼠皮肤损伤愈合[C]//江苏苏洲:中华医学会第十次全国内分泌学学术会议论文汇编.
于萍, 刘庆华, 杨巧丽, 等. 2014. 奥斯曼生眉液对C57BL/6小鼠毛发生长影响的研究[J]. 中国美容医学杂志, 23(6):461-464.
曾明辉, 谭正怀. 2008. 生发乳防治脱发的实验研究[J]. 时珍国医国药, 19(9):2266-2267.
周乃慧. 2008. 血管生成素在人毛囊中的表达及其促毛发生长的作用研究[D]. 南京:南京医科大学.
周琼, 吴珍泉, 李忠荣, 等. 2008. 美洲大蠊对低免疫力小鼠免疫功能影响的研究[J]. 福建农林大学学报, 37(5):519-522.
周鑫鑫. 2018. 家蚕胸腺素对蚕体抗核型多角体病毒感染能力的影响[J]. 蚕业科学, 44(1):64-69.
Badamchian M, Fagarasan MO, Danner RL, et al. 2003. Thymosin β(4) reduces lethality and down-regulates inflammatory mediators in endotoxin-induced septic shock[J]. International Immunopharmacology, 3(8):1225-1233.
Ben-Amitai D, Lurie R, Laron Z. 2006. I-GF-1 signalling controls the hair growth cycle and the differentiation of hair shafts[J]. Journal of Investigative Dermatology, 125(5):873-882.
Cadigan KM, Nusse R. 1997. Wnt signaling:a common theme in animal development[J]. Genes & Development, 11(24):3286-3305.
Cha HJ, Jeong MJ, Kleinman HK. 2003. Role of thymosin beta 4 in tumor metastasis and angiogenesis[J]. Journal of the National Cancer Institute, 95(22):1674-1680.
Cha HJ, Philp D, Lee SH, et al. 2010. Over-expression of thymosin beta 4 promotes abnormal tooth development and stimulation of hair growth[J]. International Journal of Developmental Biology, 54(1):135-140.
Chodankar R, Chang CH, Yue Z, et白素英, 徐艳春, 周冬良, 等. 2004. 中国豹猫6个群体的RAPD分析[J]. 东北林业大学学报, 32:52-54.
汪松. 1998. 中国濒危动物红皮书 兽类[M]. 北京:科学出版社.
张春兰. 2016. 绵羊骨骼肌转录组高通量测序从头组装和特征分析[J]. 潍坊学院学报, 16(2):6-10.
张淑云, 王玉玺, 吴玉琴. 1988. 豹猫消化系统解剖[J]. 野生动物学报, 25:44.
Baklouti-Gargourui S, Ghorbel M, Ben Mahmoud A, et al. 2013. A novel m.6307A>G mutation in the mitochondrial COXI gene in asthenozoospermic infertile men[J]. Molecular Reproduction and Development, 80:581-587.
Bredemeyer KR, Harris AJ, Li G, et al. 2021. Ultracontinuous single haplotype genome assemblies for the domestic cat (Felis catus) and Asian leopard cat (Prionailurus bengalensis)[J]. Journal of Heredity, 112(2):165-173.
Camacho C, Coulouris G, Avagyan V, et al. 2009. BLAST+:architecture and applications[J/OL]. BMC Bioinformatics, 10:421[2021-04-02].
Conesa A, Götz S, García-Gómez JM, et al. 2005. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research[J/OL]. Bioinformatics, 21:3674-3676[2021-04-02].
Dennerlein S, Rehling P. 2015. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance[J]. Journal of Cell Science, 128:833.
Du L, Li W, Fan Z, et al. 2015. First insights into the giant panda (Ailuropoda melanoleuca) blood transcriptome:a resource for novel gene loci and immunogenetics[J]. Molecular Ecology Resources, 15:1001-1013.
Fagerberg L, Hallström BM, Oksvold P, et al. 2014. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics[J]. Molecular & Cellular Proteomics, 13:397-406.
Feng C, Chen M, Xu CJ, et al. 2012. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq[J/OL]. BMC Genomics, 13:19[2021-03-10].
Haas BJ, Papanicolaou A,Yassour M, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis[J]. Nature Protocols, 8:1494-1512.
Hayasaka I, Cho K, Akimoto T, et al. 2018. Genetic basis for childhood interstitial lung disease among Japanese infants and children[J]. Pediatric Research, 83:477-483.
Hughes GR. 1998. Wild cats-status survey and conservation action plan[J]. Biodiversity & Conservation, 7:842-844.
Ito H, Nakajima N, Onuma M, et al. 2020. Genetic diversity and genetic structure of the wild tsushima leopard cat from genome-wide analysis[J]. Animals, 10:1375-1387.
Ko BJ, An J, Seomun H, et al. 2018. Microsatellite DNA analysis reveals lower than expected genetic diversity in the threatened leopard cat (Prionailurus bengalensis) in South Korea[J]. Genes & Genomics, 40:521-530.
Kuzan A. 2016. Thymosin β as an actin-binding protein with a variety of functions[J]. Advances in Clinical and Experimental Medicine, 25:1331-1336.
Langmead B. 2010. Aligning short sequencing reads with bowtie[J]. Current Protocols in Bioinformatics, 32:11.17.11-11.17.14.
Li B, Dewey CN. 2011. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J/OL]. BMC Bioinformatics, 12:323(2011-08-04)[2021-04-02].
Li B, Meng YQ, Li Z, et al. 2019. MiR-629-3p-induced downregulation of SFTPC promotes cell proliferation and predicts poor survival in lung adenocarcinoma[J]. Artificial Cells, Nanomedicine, and Biotechnology, 47:3286-3296.
Li W, Godzik A. 2006. Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 22:1658-1659.
Lu T, Sun Y, Ma Q, et al. 2016. De novo transcriptomic analysis and development of EST-SSR markers in the Siberian tiger (Panthera tigris altaica)[J]. Molecular Genetics and Genomics, 291:2145-2157.
Masuda R, Yoshida MC, Shinyashiki F, et al. 1994. Molecular phylogenetic status of the iriomote cat Felis iriomotensis, inferred from mitochondrial DNA sequence analysis[J]. Zoology, 11:597-604.
Masuda R, Yoshida MC. 1995. Two Japanese wildcats, the tsushima cat and the iriomote cat, show the same mitochondrial DNA lineage as the leopard cat Felis bengalensis[J]. Zoological Science, 12:655-659.
Meng XL, Liu P, Jia FL, et al. 2015. De novo transcriptome analysis of Portunus trituberculatus ovary and testis by rna-seq:identification of genes involved in gonadal development[J/OL]. PLoS ONE, 10(6):e0128659(2015-06-04)[2021-04-02].
Moriya Y, Itoh M, Okuda S, et al. 2007. KAAS:an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 35:182-185.
Mouton-Liger F, Sahún I, Collin T, et al. 2014. Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression:implications for down syndrome[J]. Neurobiology of Disease, 63:92-106.
Mukherjee S, Krishnan A,Tamma K, et al. 2010. Ecology driving genetic variation:a comparative phylogeography of jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis) in India[J/OL]. PLoS ONE, 5(10):e13724(2010-02-29)[2021-04-02].
Patel RP, Wutke S, Lenz D, et al. 2017. Genetic structure and phylogeography of the leopard cat (Prionailurus bengalensis) inferred from mitochondrial genomes[J]. Journal of Heredity, 108(4):349-360.
Renelt M, Von Bohlen Und Halbach V, Von Bohlen Und Halbach O. 2014. Distribution of PCP4 protein in the forebrain of adult mice[J]. Acta Histochemica, 116:1056-1061.
Ross J, Brodie J, Cheyne S, et al. 2015. Prionailurus bengalensis[DB/OL]. The IUCN Red List of Threatened Species 2015:e.T18146A50661611. (2014-05-20)[2021-04-02].
Saka T, Nishita Y, Masuda R. 2018. Low genetic variation in the MHC class II DRB gene and MHC-linked microsatellites in endangered island populations of the leopard cat (Prionailurus bengalensis) in Japan[J]. Immunogenetics, 70:115-124.
Shmueli O, Horn-Saban S, Chalifa-Caspi V, et al. 2003. GeneNote:whole genome expression profiles in normal human tissues[J]. Comptes Rendus Biologies, 326:1067-1072.
Sunquist M, Sunquist F. 2002. Wild cats of the world[M]. Chicago:University of Chicago Press.
Spradling KD, Glenn JP, Garcia R, et al. 2013. The baboon kidney transcriptome:analysis of transcript sequence, splice variants, and abundance[J/OL]. PLoS ONE, 8(4):e57563(2013-04-23)[2021-04-02].
Su AI, Cooke MP, Ching KA, et al. 2002. Large-scale analysis of the human and mouse transcriptomes[J]. Proceedings of the National Academy of Sciences, 99(7):4465-4470.
Suzuki H, Hosoda T, Sakurai S, et al. 1994. Phylogenetic relationship between the Iriomote cat and the leopard cat, Felis bengalensis, based on the ribosomal DNA[J]. The Japanese Journal of Genetics, 69:397-406.
Trapnell C, Williams B, Pertea G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 28:511-515.
Wang W,Kirkness EF. 2005. Short interspersed elements (SINEs) are a major source of canine genomic diversity[J]. Genome Research, 15:1798-1808.
Wang Z, Sun L, Guan W, et al. 2018. De novo transcriptome sequencing and analysis of male and female swimming crab (Portunus trituberculatus) reproductive systems during mating embrace (stage Ⅱ)[J/OL]. BMC Genetics, 19:3(2018-01-03)[2021-04-02].
Xiong MY, Shao XN, Long Y, et al. 2016. Molecular analysis of vertebrates and plants in scats of leopard cats (Prionailurus bengalensis) in southwest China[J]. Journal of Mammalogy, 97:1054-1064.
Yanai I, Benjamin H, Shmoish M, et al. 2005. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification[J]. Bioinformatics, 21:650-659.
Ye J, Fang L, Zheng H, et al. 2006. WEGO:a web tool for plotting GO annotations[J]. Nucleic Acids Research, 34:293-297.
CopyRight©2021 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3