Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2021 Vol.40 No.4

Genetic Diversity and Phylogeography of Opsariichthys macrolepis from the Upper and Middle Yangtze River Based on Cytochrome b Sequences
Author of the article:GAO Jiaxin1,2, YU Dan1, LIU Huanzhang1*
Author's Workplace:1. Key Laboratory of Aquatic Biodiversity and Conversation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Key Words:Opsariichthys macrolepis; genetic diversity; phylogeography; cyt b gene; Pleistocene glaciation
Abstract:In the present study, the genetic diversity, population demography and phylogeography of 13 Opsariichthys macrolepis Yang et Huang populations from the upper Yangtze River and 9 tributaries were investigated based on mitochondrial DNA cytochrome b gene sequences. A total of 79 haplotypes were identified from 414 individuals with relatively high haplotype and nucleotide diversity (h=0.930 1, π=0.129 421). The results of haplotype-based phylogenetic analysis using Maximum Likelihood and Bayesian trees revealed 2 major lineages (Lineage A and Lineage B), representing a significant west-east split. Lineage A was consisted exclusively of populations from 2 tributaries (Hanjiang River and Qingjiang River) of the middle Yangtze River, while Lineage B mainly from the upper Yangtze River and Yuanjiang River. According to the molecular clock, these 2 lineages began to diverge in the early Pleistocene (around 1.34 Ma). Pairwise comparison of genetic differentiation index (FST) among populations ranged from -0.016 24 to 0.998 27, and most pairs showed a high degree of differentiation, indicating significant genetic isolation among populations. In addition, some population structures could be identified based on spatial analysis of molecular variance. For example, populations from Laohe River, Renhe River and Qingjiang River showed significant differentiation from other populations. The result of Bayesian skyline plot showed that most populations experienced demographic expansion or contraction during 0.01-0.04 Ma, and this was probably correlated with the glacial-interglacial cycle. This study suggests that the uplift of Qinghai-Tibetan Plateau and Pleistocene glacial cycles may have played vital roles in shaping the genetic patterns and demographic history of O. macrolepis from the upper and middle Yangtze River.
2021,40(4): 361-373 收稿日期:2020-10-13
分类号:Q959.4
基金项目:中国科学院战略性先导科技专项(A类)(XDA23040402);三峡工程鱼类资源保护湖北省重点实验室开放课题项目(SXSN/4381);环保部生物多样性保护专项(2019HJ2096001006);中国科学院生物多样性监测与研究网络内陆水体鱼类多样性监测专项网(SINOBON)
作者简介:高嘉昕(1994-),男,硕士研究生,研究方向:鱼类系统进化与生物地理学
*通信作者:刘焕章,E-mail:hzliu@ihb.ac.cn
参考文献:
陈宜瑜. 1982. 马口鱼类分类的重新整理[J]. 海洋与湖沼, 13(3):293-299.
陈义雄, 张咏青. 2005. 台湾淡水鱼类(上卷)(鲤形目)[M]. 台湾:水产出版社.
崔之久, 陈艺鑫, 周力平, 等. 2011. 中国第四纪冰期历史、特征及成因探讨[J]. 第四纪研究, 31(5):749-764.
刘思情, 唐琼英, 李小娟, 等. 2013. 基于线粒体细胞色素b基因的黑鳍鳈(Sarcocheilichthys nigripinnis)生物地理学过程分析[J]. 动物学研究, 34(5):437-445.
王晨帆. 2005. 台湾须鱲(鲤形目:鲤科)的亲缘地理及形态变异之研究[D]. 台北:国立台湾大学动物学研究所.
王雪. 2019. 赤水河两种代表性鱼类种群遗传结构和空间生态过程[D]. 武汉:中国科学院水生生物研究所.
杨干荣, 黄宏金. 1964. Ⅰ 雅罗鱼亚科[M]//伍献文. 中国鲤科鱼类志(上卷). 上海:上海科学技术出版社.
俞丹, 张智, 张健, 等. 2019. 基于cyt b基因的雅鲁藏布江下游墨脱江段及察隅河墨脱裂腹鱼的遗传多样性及种群历史动态分析[J]. 水生生物学报, 43(5):923-930.
李吉均, 方小敏. 1998. 青藏高原隆起与环境变化研究[J]. 科学通报, 43(15):1568-1574.
Aljanabi SM, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques[J]. Nucleic Acids Research, 25(22):4692-4693.
April J, Hanner RH, Dion-Côté AM, et al. 2013. Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes[J]. Molecular Ecology, 22(2):409-422.
Ashiwa H, Hosoya K. 1998. Osteology of Zacco pachycephalus, sensu Jordan & Evermann (1903), with special reference to its systematic position[J]. Environmental Biology of Fishes, 52(1-3):163-171.
Avise JC. 2000. Phylogeography:the history and formation of species[M]. Cambridge:Harvard University Press.
Banarescu P. 1968. Revision of the genera Zacco and Opsariichthys (Pisces, Cyprinidae)[J]. Věstník Československé Společnosti Zoologické, 32:305-311.
Bay LK, Caley MJ. 2011. Greater genetic diversity in spatially restricted coral reef fishes suggests secondary contact among differentiated lineages[J]. Diversity, 3(3):483-502.
Chalk TB, Hain MP, Foster GL, et al. 2017. Causes of ice age intensification across the Mid-Pleistocene transition[J]. Proceedings of the National Academy of Sciences, 114(50):13114-13119.
Chen IS, Wu JH, Huang SP. 2009. The taxonomy and phylogeny of the cyprinid genus Opsariichthys Bleeker (Teleostei:Cyprinidae) from Taiwan, with description of a new species[J]. Environmental Biology of Fishes, 86:165-183.
Chen W, Schmidt BV, He SP. 2018. The potential colonization histories of Opsariichthys bidens (Cyprinidae) in China using Bayesian binary MCMC analysis[J]. Gene, 676:1-8.
Darriba D, Taboada GL, Doallo R, et al. 2012. jModelTest 2:more models, new heuristics and parallel computing[J]. Nature Methods, 9(8):772.
Dupanloup I, Schneider S, Excoffier L. 2002. A simulated annealing approach to define the genetic structure of populations[J/OL]. Molecular Ecology, 11(12):2571-2581(2014-10-09)[2020-09-14]. http://cmpg.unibe.ch/software/samova2/.
Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 10(3):564-567.
Frankham R. 1996. Relationship of genetic variation to population size in wildlife[J]. Conservation Biology, 10(6):1500-1508.
Fu YX, Li WH. 1993. Statistical tests of neutrality of mutations[J]. Genetics, 133(3):693-709.
Galtier N, Gouy M, Gautier C. 1996. SEAVIEW and PHYLO_WIN:two graphic tools for sequence alignment and molecular phylogeny[J]. Bioinformatics, 12(6):543-548.
Gao Y, Wang SY, Luo J, et al. 2012. Quaternary palaeo environmental oscillations drove the evolution of the Eurasian Carassius auratus complex (Cypriniformes, Cyprinidae)[J]. Journal of Biogeography, 39(12):2264-2278.
Grant WAS, Bowen BW. 1998. Shallow population histories in deep evolutionary lineages of marine fishes:insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 89(5):415-426.
Guindon S,Dufayard JF, Lefort V, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies:assessing the performance of PhyML 3.0[J]. Systematic Biology, 59(3):307-321.
Havrdová A, Douda J, Krak K, et al. 2015. Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture[J]. Molecular Ecology, 24(18):4759-4777.
Howes GJ. 1980. The anatomy, phylogeny and classification of the barriliine cyprinid fishes[J]. Bulletin of the British Museum (Natural History) Zoology, 37:129-198.
Kumar S, Stecher G, Tamura K. 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7):1870-1874.
Ma GC, Tsao HS, Lu HP, et al. 2006. AFLPs congruent with morphological differentiation of Asian common minnow Zacco (Pisces:Cyprinidae) in Taiwan[J]. Zoologica Scripta, 35(4):341-351.
Nettel A, Dodd RS, Afzal-Rafii Z, et al. 2008. Genetic diversity enhanced by ancient introgression and secondary contact in East Pacific black mangroves[J]. Molecular Ecology, 17(11):2680-2690.
Oksanen J, Blanchet F, Friendly M, et al. 2008. R package for community ecologists:popular ordination methods, ecological null models & diversity analysis[DB/OL]. (2020-09-12)[2020-09-14]. https://github.com/vegandevs/vegan.
Rambaut A, Drummond AJ. 2007. Tracer v1.4[DB/OL]. (2008-11-29)[2020-09-14]. http://beast.bio.ed.ac.uk/Tracer.
Ronquist F, Teslenko M, Van Der Mark P, et al. 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 61(3):539-542.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, et al. 2017. DnaSP6:DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 34(12):3299-3302.
Suchard MA, Lemey P, Baele G, et al. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10[J/OL]. Virus Evolution, 4(1):vey016[2020-09-01]. https://doi.org/10.1093/ve/vey016.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 123(3):585-595.
Thompson JD, Gibson TJ, Plewniak F, et al. 1997. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 25(24):4876-4882.
Wang X, Liu F, Yu D, et al. 2019. Mitochondrial divergence suggests unexpected high species diversity in the opsariichthine fishes (Teleostei:Cyprinidae) and the revalidation of Opsariichthys macrolepis[J]. Ecology and Evolution, 9(5):2664-2677.
Wright S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating[J]. Evolution, 19:395-420.
Wu TH, Tsang LM, Chow LH, et al. 2019. Cryptic lineages and hybridization of the predaceous chub Parazacco spilurus (Actinopterygii, Cypriniformes, Xenocyprididae) in Hong Kong[J]. Hydrobiologia, 826(1):99-111.
Zhang L, Tang QY, Liu HZ. 2008. Phylogeny and speciation of the eastern Asian cyprinid genus Sarcocheilichthys[J]. Journal of Fish Biology, 72(5):1122-1137.
CopyRight©2021 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3