Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2021 Vol.40 No.2

Factors Influencing the Escape Distance of Tree Sparrows in Beijing City
Author of the article:ZHANG Fanmeng, YAN Ran, LIU Ziyan, XIA Canwei*
Author's Workplace:Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
Key Words:Passer montanus; escape distance; Beijing; urban birds
Abstract:Urbanization represents a dreadful challenge for wildlife. Behavioral adjustments assist animals in dealing with the urbanization process. Short escape distance is an important behavioral flexibility of birds in adaptation to urban environments. In this study, factors influencing the escape distances of a common urban bird species, tree sparrow (Passer montanus), were investigated in Beijing City. By observing 1 326 tree sparrows from 14 parks and 15 campuses in Beijing City during the summer of 2019, we found that the alert distance of tree sparrows was 5.67 m±1.13 m, the flight initiation distance was 4.92 m±1.12 m, and the distance fled was 6.51 m±1.75 m. The escape distance of tree sparrows was influenced by the combined effects of flock sizes, risk-taking and accessibility of refuge. Specially, alert distance, flight initiation distance, and distance fled decreased as flock sizes increased with lower risk-taking for each individual; alert distance increased when there were few places to take refuge; flight initiation distance decreased as the number of pedestrians increased; tree sparrows preferred shorter distance fled when there were more predators, like cats, in the habitat. These findings provide evidence of intraspecific variation in escape distance, and highlight the need of an integrated view of escape decisions to fully understand how animals tolerate urban environments.
2021,40(2): 160-168 收稿日期:2020-08-22
分类号:Q959.7;Q958
基金项目:北京师范大学本科生科研训练与创新创业项目
作者简介:张凡梦,女,本科生,参与鸟类行为研究,E-mail:201811200914@mail.bnu.edu.cn
*通信作者:夏灿玮,E-mail:xiacanwei@bnu.edu.cn
参考文献:
艾伟, 庄大方, 刘友兆. 2008. 北京市城市用地百年变迁分析[J]. 地球信息科学, 10(4):489-494.
鲍明霞, 杨森, 杨阳, 等. 2019. 城市常见鸟类对人为干扰的耐受距离研究[J]. 生物学杂志, 36(1):55-59.
方小斌, 邹瑀琦, 丁长青. 2017. 鸟类惊飞距离及其影响因素[J]. 动物学杂志, 52(5):897-910.
蒋一婷, 丁长青. 2014. 非致命性捕食风险对鸟类的影响[J]. 动物学杂志, 49(4):613-620.
潘超, 郑光美. 2003. 北京师范大学内麻雀冬季活动区的研究[J]. 北京师范大学学报(自然科学版), 39(4):537-540.
潘汝南, 赵树兰, 多立安. 2018. 飞机噪声与人为干扰对麻雀惊飞距离的影响[J]. 天津师范大学学报(自然科学版), 38(5):42-46, 80.
阮向东. 1989. 麻雀生态学研究进展[J]. 动物学杂志, 24:11, 44-48.
王彦平, 陈水华, 丁平. 2004. 惊飞距离——杭州常见鸟类对人为侵扰的适应性[J]. 动物学研究, 25(3):214-220.
胥帅帅, 邓竹青, 陈功, 等. 2018. 麻雀两性羽色的比较[J]. 动物学杂志, 53(5):693-700.
叶淑英, 王振龙, 路纪琪. 2013. 人为干扰对城市园林麻雀惊飞距离的影响[J]. 郑州大学学报(理学版), 45(4):96-101.
张谦益, 钟浩, 何飘雨, 等. 2019. 麻雀幼鸟和成鸟逃逸距离的比较[J]. 动物学杂志, 54(5):627-635.
张淑萍, 郑光美, 徐基良. 2006. 城市化对城市麻雀栖息地利用的影响:以北京市为例[J]. 生物多样性, 14(5):372-381.
Ashton KG. 2004. Comparing phylogenetic signal in intraspecific and interspecific body size datasets[J]. Journal of Evolutionary Biology, 17(5):1157-1161.
Bartoń K. 2020. MuMIn:multi-model inference. R package version 1.43.17[EB/OL]. (2020-4-15)[2020-12-6]. https://mirrors.tuna.tsinghua.edu.cn/CRAN/.
Beckerman AP, Boots M, Gaston KJ. 2007. Urban bird declines and the fear of cats[J]. Animal Conservation, 10(3):320-325.
Blumstein DT, Samia DSM, Cooper WE. 2016. Escape behavior:dynamic decisions and a growing consensus[J]. Current Opinion in Behavioral Sciences, 12:24-29.
Blumstein DT. 2019. What chasing birds can teach us about predation risk effects:past insights and future directions[J]. Journal of Ornithology, 160(2):587-592.
Cardoso GC. 2014. Nesting and acoustic ecology, but not phylogeny, influence passerine urban tolerance[J]. Global Change Biology, 20(3):803-810.
Clergeau P. 2006. Avifauna homogenisation by urbanisation:analysis at different European latitudes[J]. Biology Conservation, 127(3):336-344.
Cooper WE, Blumstein DT. 2015. Escaping from predators:an integrative view of escape decisions[M]. Cambridge:Cambridge University Press.
Cooper WE, Frederick WG. 2007. Optimal flight initiation distance[J]. Journal of Theoretical Biology, 244(1):59-67.
Cooper WE. 2003. Risk factors affecting escape behavior by the desert iguana, Dipsosaurus dorsalis:speed and directness of predator approach, degree of cover, direction of turning by a predator, and temperature[J]. Canadian Journal of Zoology, 81(6):979-984.
Dowling L, Bonier F. 2018. Should I stay, or should I go:modeling optimal flight initiation distance in nesting birds[J/OL]. PLoS ONE, 13(11):e0208210[2020-06-30]. https://doi.org/10.1371/journal.pone.0208210.
Garamszegi LZ. 2014. Uncertainties due to within-species variation in comparative studies:measurement errors and statistical weights[M]//Garamszegi LZ. Modern phylogenetic comparative methods and their application in evolutionary biology. New York:Springer.
Hansen TF, Bartoszek K. 2012. Interpreting the evolutionary regression:the interplay between observational and biological errors in phylogenetic comparative studies[J]. Systematic Biology, 61(3):413-425.
Huang D, Su Z, Zhang R, et al. 2010. Degree of urbanization influences the persistence of Dorytomus weevils (Coleoptera:Curculionoidae) in Beijing, China[J]. Landscape and Urban Planning, 96(3):163-171.
Ives AR, Midford PE, Garland T. 2007. Within-species variation and measurement error in phylogenetic comparative methods[J]. Systematic Biology, 56(2):252-270.
Legagneux P, Ducatez S. 2013. European birds adjust their flight initiation distance to road speed limits[J/OL]. Biology Letters, 9(5):20130417[2020-06-30]. https://doi.org/10.1098/rsbl.2013.0417.
Lowry H, Lill L, Wong BBM. 2013. Behavioural responses of wildlife to urban environments[J]. Biological Reviews, 88(3):537-549.
Luck GW. 2007. A review of the relationships between human population density and biodiversity[J]. Biological Reviews, 82(4):607-645.
Møller AP, Liang W. 2013. Tropical birds take small risks[J]. Behavioral Ecology, 24(1):267-272.
Møller AP, Nielsen JT, Garamszegi LZ. 2008. Risk taking by singing males[J]. Behavioral Ecology, 19(1):41-53.
Møller AP, Samia DSM, Weston MA, et al. 2016. Flight initiation distances in relation to sexual dichromatism and body size in birds from three continents[J]. Biological Journal of the Linnean Society, 117(4):823-831.
Møller AP, Xia CW. 2020. The ecological significance of birds feeding from the hand of humans[J/OL]. Scientific Reports, 10:9773[2020-06-30]. https://doi.org/10.1038/s41598-020-66165-9.
Møller AP. 2008. Flight distance of urban birds, predation, and selection for urban life[J]. Behavioral Ecology and Sociobiology, 63(1):63-75.
Møller AP. 2011. Song post height in relation to predator diversity and urbanization[J]. Ethology, 117(6):529-538.
Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data:a practical guide for biologists[J]. Biological Reviews, 85(4):935-956.
Parris KM, Schneider A. 2009. Impacts of traffic noise and traffic volume on birds of roadside habitats[J/OL]. Ecology and Society, 14(1):29[2020-06-30]. https://www.ecologyandsociety.org/vol14/iss1/art29/.
Rankin DJ, Bargum K, Kokko H. 2007. The tragedy of the commons in evolutionary biology[J]. Trends in Ecology & Evolution, 22(12):643-651.
Rankin DJ. 2005. Can adaptation lead to extinction?[J]. Oikos, 111(3):616-619.
Sala OE, Chapin FS, Armesto JJ, et al. 2000. Global biodiversity scenarios for the year 2100[J]. Science, 287(5459):1770-1774.
Samia DSM, Nakagawa S, Nomura F, et al. 2015. Increased tolerance to humans among disturbed wildlife[J/OL]. Nature Communications, 6:8877[2020-06-30]. https://nature.com/articles/ncomms9877/.
Schlesinger MD, Manley PN, Holyoak M. 2008. Distinguishing stressors acting on land bird communities in an urbanizing environment[J]. Ecology, 89(8):2302-2314.
Slabbekoorn H, Ripmeester EAP. 2008. Birdsong and anthropogenic noise:implications and applications for conservation[J]. Molecular Ecology, 17(1):72-83.
Sol D, Lapiedra O, González-Lagos C. 2013. Behavioural adjustments for a life in the city[J]. Animal Behaviour, 85(5):1101-1112.
Sol D, Maspons J, Gonzalez-Voyer A, et al. 2018. Risk-taking behavior, urbanization and the pace of life in birds[J/OL]. Behavioral Ecology and Sociobiology, 72(3):59[2020-06-30]. https://link.springer.com/article/10.1007%2Fs00265-018-2463-0.
Stankowich T, Blumstein DT. 2005. Fear in animals:a meta-analysis and review of risk assessment[J]. Proceedings of the Royal Society B:Biological Sciences, 272(1581):2627-2634.
Stone GN, Nee S, Felsenstein J. 2011. Controlling for non-independence in comparative analysis of patterns across populations within species[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 366(1569):1410-1424.
Symonds MRE, Moussalli A. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion[J]. Behavioral Ecology and Sociobiology, 65(1):13-21.
Tatte K, Møller AP, Mand R. 2018. Towards an integrated view of escape decisions in birds:relation between flight initiation distance and distance fled[J]. Animal Behaviour, 136(1):75-86.
Ydenberg RC, Dill LM. 1986. The economics of fleeing from predators[J]. Advances in the Study of Behavior, 16:229-249.
CopyRight©2021 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3