Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2021 Vol.40 No.1

MHC Genotyping for Captive Giant Pandas by PCR Sequencing
Author of the article:ZHU Ying1, LI Yudong1, HE Ming2, HU Lan2, WU Honglin2*
Author's Workplace:1. Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China;
2. China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan Province 611800, China
Key Words:giant panda; MHC gene; genetic management; PCR sequencing
Abstract:Major histocompatibility complex (MHC) genes provide important genetic parameters for captive management of endangered animals. We constructed MHC genotyping by PCR sequencing and evaluated genetic variation using 3 MHC class Ⅰ genes (Aime-C, Aime-I and Aime-L) and 4 MHC class Ⅱ genes (Aime-DQA1, Aime-DQA2, Aime-DQB1 and Aime-DRB3) by PCR sequencing for 91 giant pandas from China Conservation and Research Center for the Giant Panda. We found 22 MHC class Ⅰ alleles and 23 MHC class Ⅱ alleles, including 3 new alleles and named them Aime-I*08, Aime-L*08 and Aime-L*09, respectively. The Aime-L*08 shows 99.8% similarity to Aime-L*02 (1 base difference) and Aime-L*09 shows 99.6% similarity to Aime-L*04 (2 bases difference). The current method does not require polyacrylamide electrophoresis and silver staining, but only PCR amplification, and could be used for long-fragment genotyping. Therefore, it could be wildly used in panda breeding centers for MHC genotyping. This study provides important method for captive genetic management in giant panda.
2021,40(1): 46-52 收稿日期:2020-04-26
Chen YY, Zhang YY, Zhang HM, et al. 2010. Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class Ⅱ genes of the giant panda[J]. Journal of Experimental Zoology Part B:Molecular and Developmental Evolution, 314(3):208-223.
Chen YY, Zhu Y, Wan QH, et al. 2013. Patterns of adaptive and neutral diversity identify the Xiaoxiangling Mountains as a refuge for the giant panda[J/OL]. PLoS ONE, 8(7):e70229[2020-01-20].
Han QH, Sun RN, Yang HQ, et al. 2019. MHC class Ⅰ diversity predicts non-random mating in Chinese alligators (Alligator sinensis)[J]. Heredity, 122(6):809-818.
Klein J. 1986. The Natural history of the major histocompatibility complex[M]. New York:Wiley & Sons.
Kumar S, Stecher G, Li M, et al. 2018. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 35(6):1547-1549.
Lan H, Zhou T, Wan QH, et al. 2019. Genetic diversity and differentiation at structurally varying MHC haplotypes and microsatellites in bottlenecked populations of endangered crested ibis[J/OL]. Cells, 8(4):377[2020-01-20].
Li L, Wang BB, Ge YF, et al. 2014. Major histocompatibility complex class Ⅱ polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease[J]. International Journal of Immunogenetics, 41(5):401-412.
Luo M, Pan H. 2013. MHC Ⅱ DRB variation and trans-species polymorphism in the golden snub-nosed monkey (Rhinopithecus roxellana)[J]. Chinese Science Bulletin, 58(18):2119-2127.
Piertney SB, Oliver MK. 2006. The evolutionary ecology of the major histocompatibility complex[J]. Heredity, 96(1):7-21.
Rousset F. 2008. GENEPOP'007:a complete re-implementation of the GENEPOP software for Windows and Linux[J]. Molecular Ecology Resources, 8(1):103-106.
Sun L, Zhou T, Stone GN, et al. 2019. Seeing-good-gene-based mate choice:from genes to behavioural preferences[J]. Journal of Animal Ecology, 88(11):1708-1719.
Sunnucks P, Wilson ACC, Beheregaray LB, et al. 2000. SSCP is not so difficult:the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology[J]. Molecular Ecology, 9(11):1699-1710.
Yao G, Zhu Y, Wan Q, et al. 2015. Major histocompatibility complex class Ⅱ genetic variation in forest musk deer (Moschus berezovskii) in China[J]. Animal Genetics, 46(5):535-543.
Zeng QQ, He K, Sun DD, et al. 2016a. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class Ⅰ genes[J/OL]. BMC Evolutionary Biology, 16:42[2020-01-20].
Zeng QQ, Zhong GH, He K, et al. 2016b. Molecular characterization of classical and nonclassical MHC class Ⅰ genes from the golden pheasant (Chrysolophus pictus)[J]. International Journal of Immunogenetics, 43(1):8-17.
Zhai T, Yang H, Zhang R, et al. 2017. Effects of population bottleneck and balancing selection on the Chinese alligator are revealed by locus-specific characterization of MHC genes[J/OL]. Scientific Reports, 7:5549[2020-01-20].
Zhang P, Huang K, Zhang B, et al. 2018. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations[J/OL]. BMC Evolutionary Biology, 18:29[2020-01-20].
Zhu Y, Grueber C, Li Y, et al. 2020. MHC-associated Baylisascaris schroederi load informs the giant panda reintroduction program[J]. International Journal for Parasitology:Parasites and Wildlife, 12:113-120.
Zhu Y, Liu HY, Yang HQ, et al. 2017. Factors affecting genotyping success in giant panda fecal samples[J/OL]. Peerj, 5:e3358[2020-01-20].
Zhu Y, Sun DD, Ge YF, et al. 2013a. Isolation and characterization of class Ⅰ MHC genes in the giant panda (Ailuropoda melanoleuca)[J]. Chinese Science Bulletin, 58(18):2140-2147.
Zhu Y, Wan QH, Yu B, et al. 2013b. Patterns of genetic differentiation at MHC class Ⅰ genes and microsatellites identify conservation units in the giant panda[J]. BMC Evolutionary Biology, 13(1):227[2020-01-20].
Zhu Y, Wan QH, Zhang HM, et al. 2019. Reproductive strategy inferred from major histocompatibility complex-based inter-individual, sperm-egg, and mother-fetus recognitions in giant pandas (Ailuropoda melanoleuca)[J]. Cells, 8(3):257[2020-01-20].
CopyRight©2021 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3