Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2020 Vol.39 No.6

Effect of Temperature on the Embryonic Development of Oryzias melastigma
Author of the article:LIU Kaikai1, YUAN Tingzhu2, TANG Junwei2, SONG Jingjing1, LIU Hongjun1, CHI Wendan1, GE Shanshan1, YU Daode1*
Author's Workplace:1. Marine Biology Institute of Shandong Province, Healthy Mariculture Engineering Research Center of Shandong Province, Qingdao Engineering Laboratory of Exploration and Utilization of Marine Germ Plasm Resources, Qingdao, Shandong Province 266104, China;
2. Marine Economic Promotion Center of Chang Island Marine Ecological Civilization Comprehensive Test Zone, Yantai, Shandong Province 265800, China
Key Words:Oryzias melastigma; temperature; hatching rate; hatching time; deformity rate
Abstract:In this study, the effect of temperature on embryonic development of Oryzias melastigma were studied by observation of incubation period, hatching rate and deformity rate at water temperature of 19 ℃, 22 ℃, 25 ℃, 28 ℃, 31 ℃ and 34 ℃. The result indicated that the fertilized eggs can be hatched within 19.8-33.8 ℃. Specifically, there was a negative correlation between hatching time and temperature within certain range. Under the temperature of 34 ℃, the incubation period of embryos was 8.5 days. At 28 ℃, the embryo hatching rate was the highest. The optimal temperature range for the hatching of fertilized eggs was 24.8-30.5 ℃,with the optimum of 28 ℃. High and low temperature would increase the deformity rate of newly hatched larvae. The biological zero was calculated to be 14.89 ℃ and effective accumulative temperature degree was found 3 919.04 ℃·h for embryonic development. This study provided reference for the artificial breeding of O. melastigma.
2020,39(6): 658-663 收稿日期:2020-07-13
分类号:S917;Q132.7
基金项目:烟台科技计划项目(2018SFBF084;2019ZDCX018);国家重点研发计划项目(2018YFC1406406)
作者简介:刘凯凯(1992-),男,研究实习员,研究方向:鱼类发育和生态学研究,E-mail:1040039367@qq.com
*通信作者:于道德,E-mail:yudaode@shandong.cn
参考文献:
柴学军, 孙敏, 许源剑. 2011. 温度和盐度对日本黄姑鱼胚胎发育的影响[J]. 南方水产科学, 7(5): 43-49.
陈漪, 王晓杰, 冉皓宇, 等. 2016. 海水模式种青鳉鱼(Oryzias melastigma)的胚胎发育观察[J]. 海洋与湖沼, 47(1): 71-82.
樊廷俊, 史振平. 2002. 鱼类孵化酶的研究进展及其应用前景[J]. 海洋湖沼通报, 1: 48-56.
胡振禧, 黄洪贵, 吴妹英, 等. 2014. 温度对斑鳜胚胎发育的影响[J]. 淡水渔业, 44(3): 104-107.
黄贤克, 单乐州, 闫茂仓, 等. 2017. 黄姑鱼胚胎发育及其与温度和盐度的关系[J]. 海洋科学, 41(7): 44-50.
李岑, 姜志强, 刘庆坤, 等. 2011. 泰国斗鱼的胚胎发育及温度对胚胎发育的影响[J]. 大连海洋大学学报, 26(5): 402-406.
穆景利, 王莹, 王新红, 等. 2011. Cd2+、Hg2+、Cr6+和Pb2+对黑点青鳉(Oryzias melastigma)早期生活阶段的毒性效应研究[J]. 生态毒理学报, 6(4): 352-360.
王润萍, 戴铃灵, 陈雅飞, 等. 2019. 短期温度、盐度胁迫对海洋青鳉鱼(Oryzias melastigma)摄食行为及抗氧化的影响[J]. 海洋与湖沼, 50(2): 378-387.
王友红, 刘洪军, 于道德, 等. 2017. 海水青鳉胚胎发育的观察[J]. 海洋科学, 41(6): 18-25.
伍辛泷, 黄乾生, 方超, 等. 2012. 新兴海洋生态毒理学模式生物——海洋青鳉鱼(Oryzias melastigma)[J]. 生态毒理学报, 7(4): 345-353.
肖枫, 康怀彬. 2007. 环境胁迫对水产动物胚胎及幼苗发育影响的研究概况[J]. 生物学通报, 42(2): 19-20.
谢仰杰, 翁朝红, 管延华, 等. 2001. 温度对花尾胡椒鲷胚胎发育的影响[J]. 集美大学学报(自然科学版), 6(2): 138-143.
殷名称.1995. 鱼类生态学[M]. 北京: 中国农业出版社.
Ahn H, Yamada Y, Okamura A, et al. 2012. Effect of water temperature on embryonic development and hatching time of the Japanese eel Anguilla japonica[J]. Aquaculture, 330: 100-105.
Bao VWW, Leung KMY, Qiu JW, et al. 2011. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species[J]. Marine Pollution Bulletin, 62(5): 1147-1151.
Chen XP, Li L, Wong CK, et al. 2009. Rapid adaptation of molecular resources from zebrafish and medaka to develop an estuarine/marine model[J]. Comparative Biochemistry & Physiology Part C, 149(4): 647-655.
Cook MA, Guthrie KM, Rust MB, et al. 2005. Effects of salinity and temperature during incubation on hatching and development of lingcod Ophiodon elongatus Girard, embryos[J]. Aquaculture Research, 36(13): 1298-1303.
Dong SJ, Kang M, Wu XL, et al. 2014. Development of a promising fish model (Oryzias melastigma) for assessing multiple responses to stresses in the marine environment[J/OL]. Biomed Research International, 2014: 563131[2020-02-10]. https://doi.org/10.1155/2014/563131.
Finn RN. 2007. The physiology and toxicology of salmonid eggs and larvae in relation to water quality criteria[J]. Aquatic Toxicology, 81(4): 337-354.
Gabillard JC, Weil C, Rescan PY, et al. 2005. Does the GH/IGF system mediate the effect of water temperature on fish growth? A review[J]. Cybium, 29(2): 107-117.
Guillen A, Honryo T, Ibarra J, et al. 2014. Effect of water temperature on embryonic development of yellowfin tuna Thunnus albacares inhabiting the Eastern Pacific Ocean[J]. Aquaculture Science, 62(3): 319-322.
Kamler E. 1992. Early life history of fish, an energetics approach[J]. Reviews in Fish Biology and Fisheries, 2(4): 348-349.
Kong RYC, Giesy JP, Wu RSS, et al. 2008. Development of a marine fish model for studying in vivo molecular responses in ecotoxicology[J]. Aquatic Toxicology, 86(2): 131-141.
Korwin-Kossakowski M. 2012. Fish hatching strategies: a review[J]. Reviews in Fish Biology and Fisheries, 22(1): 225-240.
Petereit C, Haslob H, Kraus G, et al. 2008. The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae[J]. Marine Biology, 154(2): 295-306.
Saka S, Firat K, Çoban D. 2004. Development of the common dentex (Dentex dentex) eggs in relation to temperature[J]. Aquaculture Research, 35(3): 224-231.
Tian L, Wang M, Li X, et al. 2011. Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin, brevetoxin-1[J]. Aquatic Toxicology, 104(3-4): 211-217.
CopyRight©2021 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3