Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2020 Vol.39 No.5

Study of Intraspecific Variation in Functional Traits of Oreolalax omeimontis Tadpoles
Author of the article:WU Xiaoqing1, LIU Mengyu1, WU Yong1, WANG Gang1,2*
Author's Workplace:1. College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China;
2. Institute of Ecological Environment Protection, Chengdu Normal University, Chengdu 611130, China
Key Words:Oreolalax omeimontis; tadpole; functional niche; ontogenetic change; intraspecific variation
Abstract:Most of the amphibian's functional ecology studies focused on the difference between species and ignored the potential difference within species. However, increasing research started to recognize the importance of intraspecific variation in ecology and evolution. In the present study, we quantified the intraspecific variation in functional traits of Oreolalax omeimontis tadpoles. Our results indicated the high intraspecific variation in O. omeimontis tadpoles functional traits (mean coefficient variation=13.95%±12.79%), which was caused by ontogenetic change. This is because despite functional richness had no significant difference, functional identities differed significantly, and functional overlaps were extremely low between stages. These results indicated that different stages of O. omeimontis tadpoles occupied distinct functional niche, suggesting that different stages should be considered as distinct functional entities in future functional studies. Therefore, we suggest that intraspecific traits variability should be considered in future functional studies to enhance the ability of ecologists to understand and predict ecosystem functioning and ecological patterns.
2020,39(5): 508-516 收稿日期:2020-03-05
分类号:Q959.5+3;Q951+.4
基金项目:成都师范学院2018校级科研项目(CS18ZB02)
作者简介:吴小清(1996-),理学学士,从事两栖动物生态学方面的研究,E-mail:1679628689@qq.com
*通信作者:王刚,E-mail:wanggang8793@163.com
参考文献:
费梁, 叶昌媛, 江建平. 2012. 中国两栖动物及其分布彩色图鉴[M]. 成都:四川科学技术出版社.
江建平, 谢锋, 臧春鑫, 等. 2016. 中国两栖动物受威胁现状评估[J]. 生物多样性, 24(5):588-597.
许丹, 吴小清, 赵春霖, 等. 2020. 用功能生态学方法揭示峨眉髭蟾蝌蚪和棘腹蛙蟾蝌蚪共存的原因[J]. 生态学报, 40(1):43-50.
赵尔宓. 1990. 介绍一种蛙类胚胎及蝌蚪发育的分期[J]. 生物学通报, (1):13-15.
Arratia G, Quezada-Romegialli C. 2017. Understanding morphological variability in a taxonomic context in Chilean diplomystids (Teleostei:Siluriformes), including the description of a new species[J/OL]. PeerJ, 5:e2991[2020-01-20]. https://doi.org/10.7717/peerj.2991.
Auger S, Shipley B. 2013. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest[J]. Journal of Vegetation Science, 24:419-428.
Azizi E, Landberg T, Wassersug RJ. 2007. Vertebral function during tadpole locomotion[J]. Zoology, 110:290-297.
Bolnick DI, Amarasekare P, Araújo MS, et al. 2011. Why intraspecific trait variation matters in community ecology[J]. Trends in Ecology & Evolution, 26:183-192.
Connelly S, Pringle CM, Bixby RJ, et al. 2008. Changes in stream primary producer communities resulting from large-scale catastrophic amphibian declines:can small-scale experiments predict effects of tadpole loss?[J]. Ecosystems, 11:1262-1276.
Díaz S, Purvis A, Cornelissen JHC, et al. 2013. Functional traits, the phylogeny of function, and ecosystem service vulnerability[J]. Ecology and Evolution, 3:2958-2975.
Dumay O, Tari PS, Tomasini JA, et al. 2004. Functional groups of lagoon fish species in Languedoc Roussillon, southern France[J]. Journal of Fish Biology, 64:970-983.
Eidietis L. 2006. The tactile-stimulated startle response of tadpoles:acceleration performance and its relationship to the anatomy of wood frog (Rana sylvatica), bullfrog (Rana catesbeiana), and American toad (Bufo americanus) tadpoles[J]. Journal of Experimental Zoology Part A:Comparative Experimental Biology, 305A:348-362.
Gaston KJ. 1996. Biodiversity:a biology of numbers and difference[M]. Cambridge, MA:Blackwell Science.
Gosner KL. 1960. A simplified table for staging anuran embryos and larvae with notes on identification[J]. Herpetologica, 16:183-190.
Grosjean S, Strauß A, Glos J, et al. 2011. Morphological and ecological uniformity in the funnel-mouthed tadpoles of Malagasy litter frogs, subgenus Chonomantis[J]. Zoological Journal of the Linnean Society, 162:149-183.
Huang Y, Hu JH, Wang B, et al. 2016. Integrative taxonomy helps to reveal the mask of the genus Gynandropaa (Amphibia:Anura:Dicroglossidae)[J]. Integrative Zoology, 11:134-150.
IUCN. 2016. IUCN red list of threatened species[EB/OL].[2020-01-20]. http://www.iucnredlist.org/initiatives/amphibians.
Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits:revisiting the Holy Grail[J]. Functional Ecology, 16:545-556.
Mainara XJ, Nicolas M, Lilian C, et al. 2019. Intraspecific and interspecific trait variability in tadpole meta-communities from the Brazilian Atlantic rainforest[J]. Ecology and Evolution, 9:4025-4037.
Mason NWH, Lanoiselée C, Mouillot D, et al. 2008. Does niche overlap control relative abundance in French lacustrine fish communities? A new method incorporating functional traits[J]. Journal of Animal Ecology, 77:661-669.
Prondvai E, Godefroit P, Adriaens D, et al. 2018. Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs[J]. Scientific Reports, 8:258[2018-01-10]. https://doi.org/10.1038/s41598-017-18218-9.
Purvis A, Hector A. 2000. Getting the measure of biodiversity[J]. Nature, 405:212-219.
R Development Core Team. 2011. R:a language and environment for statistical computing[EB/OL].[2020-01-30]. http://www.R-project.org/.
Randrianiaina RD, Raharivololoniaina L, Preuss C, et al. 2009. Descriptions of the tadpoles of seven species of Malagasy treefrogs, genus Boophis[J]. Zootaxa, 2021:23-41.
Ranvestel AW, Lips KR, Pringle CM, et al. 2004. Neotropical tadpoles influence stream benthos:evidence for the ecological consequences of decline in amphibian populations[J]. Freshwater Biology, 49:274-285.
Ricklefs RE. 2012. Species richness and morphological diversity of passerine birds[J]. Proceedings of the National Academy of Sciences, 109:14482-14487.
Rudolf VHW. 2006. The influence of size-specific indirect interactions in predator-prey systems[J]. Ecology, 87:362-371.
Rudolf VHW. 2008. Consequences of size structure in the prey for predator-prey dynamics:the composite functional response[J]. Journal of Animal Ecology, 77:520-528.
Rudolf VHW, Rasmussen NL. 2013. Population structure determines functional differences among species and ecosystem processes[J]. Nature Communications, 4:2318.
Strauß A, Reeve E, Randrianiaina RD, et al. 2010. The world's richest tadpole communities show functional redundancy and low functional diversity:ecological data on Madagascar's stream-dwelling amphibian larvae[J/OL]. BMC Ecology, 10:12[2020-01-10]. https://doi.org/10.1186/1472-6785-10-12.
Tilman D. 1997. The influence of functional diversity and composition on ecosystem processes[J]. Science, 277:1300-1302.
Villéger S, Brosse S, Mouchet M, et al. 2017. Functional ecology of fish:current approaches and future challenges[J]. Aquatic Sciences, 79:783-801.
Villéger S, Mason NWH, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 89:2290-2301.
Villéger S, Miranda JR, Hernández DF, et al. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation[J]. Ecological Applications, 20:1512-1522.
Violle C, Enquist BJ, McGill BJ, et al. 2012. The return of the variance:intraspecific variability in community ecology[J]. Trends in Ecology & Evolution, 27:244-252.
Wells JP, Turnquist JE. 2001. Ontogeny of locomotion in rhesus macaques (Macaca mulatta):Ⅱ. postural and locomotor behavior and habitat use in a free-ranging colony[J]. American Journal of Physical Anthropology, 115:80-94.
Winemiller KO. 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions[J]. Ecological Monographs, 61:343-365.
Yang J, Zhang GC, Ci XQ, et al. 2014. Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats[J]. Functional Ecology, 28:520-529.
Zhang MH, Chen XH, Ye CY, et al. 2019. Osteology of the Asian narrow-mouth toad Kaloula borealis (Amphibia, Anura, Microhylidae) with comments on its osteological adaptation to fossorial life[J/OL]. Acta Zoologica, 2019; 00:1-18[2020-01-10]. https://doi.org/10.1111/azo.12305.
Zhao T, Li C, Wang XY, et al. 2017. Unraveling the relative contribution of inter-and intrapopulation functional variability in wild populations of a tadpole species[J]. Ecology and Evolution, 7:4726-4734.
Zhao T, Villéger S, Cucherousset J. 2019a. Accounting for intraspecific diversity when examining relationships between non-native species and functional diversity[J]. Oecologia, 189:171-183.
Zhao T, Villéger S, Lek S, et al. 2014. High intraspecific variability in the functional niche of a predator is associated with ontogenetic shift and individual specialization[J]. Ecology and Evolution, 4:4649-4657.
Zhao T, Wang XY, Wang XG, et al. 2019b. Effects of urea on behavior and functional traits of Asiatic toad (Bufo gargarizans) tadpoles[J]. Aquatic Ecology, 53:9-19.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology