Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2020 Vol.39 No.3

Interspecific Interaction Between Pseudomonas aeruginosa and Trueperella pyogenes From the Abscesses Disease of Moschus berezovskii
Author of the article:YUAN Yang, LI Jing, ZHANG Aixue, LIN Jiafu, CHU Yiwen, WANG Xinrong*, ZHAO Kelei*
Author's Workplace:Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
Key Words:Moschus berezovskii; abscess disease; Trueperella pyogenes; Pseudomonas aeruginosa; gene knock-out; interspecific interaction
Abstract:Trueperella pyogenes is the primary pathogen of the abscess disease of forest musk deer (Moschus berezovskii), but a large amount of Pseudomonas aeruginosa can usually be detected in the purulent lesions of dying or dead deer. Although these 2 pathogenic bacteria can be co-isolated, their interaction relationship and the transition mechanism of predominant bacteria in abscess lesions are largely unknown. In this study, the interspecific interaction of P. aeruginosa with T. pyogenes was explored by constructing different mutant strains in P. aeruginosa quorum-sensing (QS) system and performing a series of detailed in vitro proximity assays. The results showed that the extracellular product of P. aeruginosa could significantly inhibit the growth of neighboring T. pyogenes. In comparison to the wild-type P. aeruginosa, knock-out of any core regulatory genes of P. aeruginosa QS system would impair the inhibition of P. aeruginosa on T. pyogenes, albeit the growth of T. pyogenes could still be blocked by the presence of the extracellular products of P. aeruginosa QS mutants. Notably, the double mutant strain PAO1-ΔlasRrhlR had the slightest inhibitory effect on T. pyogenes. These findings suggested that P. aeruginosa had significant competitive advantage over T. pyogenes by producing various QS-controlled extracellular products. Therefore, the current study provides a reasonable explanation for the transition of dominant bacterial species during the development of forest musk deer abscess diseases, contributes to further understanding the pathology of forest musk deer abscess diseases, the improvement of treatment options and the development of novel anti-infective drugs.
2020,39(3): 241-248 收稿日期:2020-01-08
分类号:Q939.1;Q959.8;R378
基金项目:四川省科学技术协会青年人才托举工程项目(2018RCTJ);重大新药创制项目(2018ZX09711-001)
作者简介:袁阳(1995—),男,硕士,研究方向:病原菌互作机制
*通信作者:王欣荣, E-mail:wang1593@sina.com;赵克雷, E-mail:zkl5228@163.com
参考文献:
罗燕, 程建国, 李秋波. 2006. 麝大肠杆菌性化脓病的病原分离鉴定[J]. 黑龙江畜牧兽医, 11: 81-83.
袁阳, 李静, 王欣荣, 等. 2019. 铜绿假单胞菌群体感应系统介导的呼吸道病原菌种间互作研究进展[J]. 四川动物, 38(4): 472-480.
赵克雷, 李旭鑫, 帕哈尔定·帕拉哈提, 等. 2011. 圈养林麝脓肿病病原菌分离鉴定及药敏分析[J]. 四川动物, 30(4): 522-526.
Balasubramanian D, Schneper L, Kumari H, et al. 2013. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence[J]. Nucleic Acids Research, 41(1): 1-20.
Baron SS, Terranova G, Rowe JJ. 1989. Molecular mechanism of the antimicrobial action of pyocyanin[J]. Current Microbiology, 18(4): 223-230.
Biswas L, Biswas R, Schlag M, et al. 2009. Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 75(21): 6910-6912.
Choi Y, Park HY, Park SJ, et al. 2011. Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa[J]. Molecules and Cells, 32(1): 57-65.
Dandekar AA, Greenberg EP. 2013. Microbiology: plan b for quorum sensing [J]. Nature Chemical Biology, 9(5): 292-293.
Guo Q, Kong W, Jin S, et al. 2014. PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1[J]. Journal of Basic Microbiology, 54(7): 633-643.
Hotterbeekx A, Kumar-Singh S, Goossens H, et al. 2017. In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp.[J]. Frontiers in Cellular and Infection Microbiology, 7: 106.
Huang T, Song X, Zhao K, et al. 2018. Quorum-sensing molecules N-Acyl homoserine lactones inhibit Trueperella pyogenes infection in mouse model[J]. Veterinary Microbiology, 213: 89-94.
Jacobs MA, Alwood A, Thaipisuttikul I, et al. 2003. Comprehensive transposon mutant library of Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Science of the United States of America, 100(24): 14339-14344.
Jost BH, Billington SJ. 2005. Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist[J]. Antonie van Leeuwenhoek, 88(2): 87-102.
Khare A, Tavazoie S. 2015. Multifactorial competition and resistance in a two-species bacterial system[J/OL]. PLoS Genetics, 11: e1005715[2019-11-10]. https://doi.org/10.1371/journal.pgen.1005715.
Little AE, Robinson CJ, Peterson SB, et al. 2008. Rules of engagement: interspecies interactions that regulate microbial communities[J]. Annual Review of Microbiology, 62: 375-401.
Orazi G, O'Toole GA. 2019. ‘It takes a village’: mechanisms underlying antimicrobial recalcitrance of polymicrobial biofilms[J]. Journal of Bacteriology, pii: JB.00530-19.
Peters BM, Jabra-Rizk MA, O'May GA, et al. 2012. Polymicrobial interactions: impact on pathogenesis and human disease[J]. Clinical Microbiology Reviews, 25(1): 193-213.
Pragman AA, Berger JP, Williams BJ. 2016. Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms[J]. Clinical Pulmonary Medicine, 23(2): 57.
Schuster M, Lostroh CP, Ogi T, et al. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis[J]. Journal of Bacteriology, 185(7): 2066-2079.
Short FL, Murdoch SL, Ryan RP, et al. 2014. Polybacterial human disease: the ills of social networking[J]. Trends in Microbiology, 22(9): 508-516.
Stover CK, Pham XQ, Erwin AL, et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen[J]. Nature, 406(6799): 959-964.
Tognon M, Köhler T, Luscher A, et al. 2019. Transcriptional profiling of Pseudomonas aeruginosa and Staphylococcus aureus during in vitro co-culture[J/OL]. BMC Genomics, 20(1): 30[2019-11-10]. https://doi.org/10.1186/s12864-018-5398-y.
Valentini M, Gonzalez D, Mavridou DA, et al. 2018. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa[J]. Current Opinion in Microbiology, 41: 15-20.
Zhao K, Du L, Lin J, et al. 2018. Pseudomonas aeruginosa quorum-sensing and type VI secretion system can direct interspecific coexistence during evolution[J/OL]. Frontiers in Microbiology, 9: 2287[2019-10-30]. https://doi.org/10.3389/fmicb.2018.02287.
Zhao K, Li W, Huang T, et al. 2017. Comparative transcriptome analysis of Trueperella pyogenes reveals a novel antimicrobial strategy[J]. Archives of Microbiology, 199: 649-655.
Zhao K, Li W, Li J, et al. 2019b. TesG is a type Ⅰ secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection[J]. Nature Microbiology, 4(3): 459-469.
Zhao K, Liu Y, Zhang X, et al. 2011. Detection and characterization of antibiotic-resistance genes in Arcanobacterium pyogenes strains from abscesses of forest musk deer[J]. Journal of Medical Microbiology, 60(Pt 12): 1820-1826.
Zhao K, Ma J, Wang X, et al. 2019a. Population divergence of Pseudomonas aeruginosa can lead to the coexistence with Escherichia coli in animal suppurative lesions[J]. Veterinary Microbiology, 231(168): 169-176.
Zhao K, Tian Y, Yue B, et al. 2013. Virulence determinants and biofilm production among Trueperella pyogenes recovered from abscesses of captive forest musk deer[J]. Archives of Microbiology, 195(3): 203-209.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology