Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2020 Vol.39 No.2

Expression Differences of Ovarian Genes of Pengbo Semi Fine Wool Sheep Producing Twin Lambs at Estrus
Author of the article:ZHANG Li1*, Pubuciren1, HU Yadong2, Zhaxi1, Luosangcuicheng1, Cirenquzhen1, Deqingzhuoga1
Author's Workplace:1. Institute of Animal Husbandry and Veterinary Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China;
2. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
Key Words:Pengbo semi fine wool sheep; character of litter size; development of ovary; RNA-Seq; differentially expressed genes
Abstract:Pengbo semi fine wool sheep is the first national new breed of sheep in Tibet Autonomous Region, and the study on the litter size can facilitate the development of fecundity research in Tibetan sheep. In this study, RNA-sequencing was applied to investigate the regulation pattern of ovarian gene during the estrus period of Pengbo semi fine wool sheep producing twin lambs(dual group). The results showed that a total of 1 021 up-regulated and 1 468 down-regulated genes were detected in the dual group compared with the single group. GO and KEGG analysis revealed that the up-regulated genes were mainly related to cell membrane structure (cell adhesion, cell movement, material transport and signal transduction processes), while the down-regulated genes were mainly related to material metabolism. These results indicated that the frequency of material transport and signal transduction in the ovary of dual group contributed to the promotion of differentiation and the development of follicles. Moreover, the enhanced adhesion and motor function of the cells might facilitate the development of oocytes and the discharge of mature ovum. Further study concerning on the up-regulated cell adhesion molecules, TGF-beta signaling pathway and solute carrier family genes in ovary can contribute to developing potential marks for twin-lambs production. Therefore, this study is not only helpful to the litter size research of Pengbo semi fine wool sheep, but also contributes to the development of fecundity research in Tibetan sheep.
2020,39(2): 156-166 收稿日期:2019-10-08
付绍印, 何小龙, 王标, 等. 2017. 不同产羔数绵羊性腺轴比较转录组研究[J]. 中国畜牧兽医, 44(2): 488-496.
贾建磊. 2015. 不同产羔性状绵羊卵巢组织差异表达蛋白质的筛选和分析[D]. 兰州: 甘肃农业大学.
兰道亮, 熊显荣, 位艳丽, 等. 2014. 基于RNA-Seq高通量测序技术的牦牛卵巢转录组研究: 进一步完善牦牛基因结构及挖掘与繁殖相关新基因[J]. 中国科学: 生命科学, 44(3): 307-317.
吕晓曼, 苏蕊, 张文广, 等. 2012. 绵羊繁殖性状相关基因的研究进展[J]. 中国畜牧兽医, 39(10): 185-190.
穆方方, 王鑫, 徐雯洁, 等. 2019. 彭波半细毛羊BMP15和BMPR-IB基因突变与其产羔性的相关分析[J]. 淮北师范大学学报(自然科学版), 40(3): 49-54.
肖国宏. 2014. miRNA-133b调控卵泡发育的分子机制[D]. 湖南: 南华大学.
央金. 2012. 彭波半细毛羊新品种种质特性研究[D]. 北京: 中国农业科学院.
杨广礼, 罗玉柱. 2004. 绵羊多胎性的研究与利用[J]. 甘肃农业大学学报, 39(1): 77-81.
杨永刚, 张梅, 胡耀中, 等. 2019. 基于转录组学的梅花鹿茸皮组织修复机制研究[J]. 四川动物, 38(4): 394-401.
应诗家. 2012. 黄体期不同饲喂量对湖羊卵泡发育、血液理化指标和卵泡内微环境的影响[D]. 南京: 南京农业大学.
张立岭. 2004. 绵羊的系统分类和种系发生[J]. 中国草食动物, 24(3): 43-44.
Chong Y, Liu G, Jiang X. 2019. Effect of BMPRIB gene on litter size of sheep in China: a meta-analysis[J/OL]. Animal Reproduction Science, 210: 106175[2019-08-10].
Gasior K, Wagner NJ, Cores J, et al. 2019. The role of cellular contact and TGF-beta signaling in the activation of the epithelial mesenchymal transition (EMT)[J]. Cell Adhesion & Migration, 13(1): 63-75.
Kidder GM, Mhawi AA. 2002. Gap junctions and ovarian folliculogenesis[J]. Reproduction, 123(5): 613-620.
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 15(12): 1-21.
Matikainen T, Perez GI, Zheng TS, et al. 2001. Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary[J]. Endocrinology, 142(6): 2468-2480.
Matzuk MM, Burns KH, Viveiros MM, et al. 2002. Intercellular communication in the mammalian ovary: oocytes carry the conversation[J]. Science, 296(5576): 2178-2180.
Miao XY, Luo QM, Qin XY. 2014. Genome-wide transcriptome analysis of mRNA and microRNAs in dorset and small tail han sheep to explore the regulation of fecundity[J]. Molecular and Cellular Endocrinology, 402(2015): 32-42.
Nilsson EE, Skinner MK. 2004. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition[J]. Molecular and Cellular Endocrinology, 214(1-2): 19-25.
Sandoval A, Duran P, Gandini MA, et al. 2017. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway[J]. Cell Calcium, 66: 1-9.
Tang J, Hu W, Chen S, et al. 2019. The genetic mechanism of high prolificacy in small tail han sheep by comparative proteomics of ovaries in the follicular and luteal stages[J/OL]. Journal of Proteomics, 204: 103394[2019-08-02].
Wigglesworth K, Lee KB, Emori C, et al. 2015. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles[J]. Biology of Reproduction, 92(1): 23-37.
Yan C, Wang P, DeMayo J. 2001. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function[J]. Molecular Endocrinology, 15(6): 854-866.
Zheng J, Wang Z, Yang H, et al. 2019. Pituitary transcriptomic study reveals the differential regulation of lncRNAs and mRNAs related to prolificacy in different FecB genotyping sheep[J/OL]. Genes, 10(2): 157[2019-08-10].
Zheng X, Price CA, Tremblay Y, et al. 2008. Role of transforming growth factor-betal 1 in gene expression and activity of estradiol and progesterone-generating enzymes in FSH-stimulated bovine granulosa cells[J]. Reproduction, 136(4): 447-457.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology