Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2019 Vol.38 No.6

Isolation and Identification of Bacillus with Antimicrobial Activity from the Lakes of Yunnan, Guizhou, and Sichuan Provinces
Author of the article:ZHANG Junli, LIU Chaolan, GUO Yidong, LIN Jiafu*
Author's Workplace:Sichuan Industrial Institute of Antibiotics, Chengdu University, Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu 610052, China
Key Words:lake sediments; Bacillus; animal pathogens; antibacterial activity
Abstract:To test the antimicrobial activities of Bacillus species, a total of 244 bacterial strains were previously isolated from the sediments of lakes in Yunnan, Guizhou, and Sichuan provinces of China. The strains were identified by sequencing the 16S rRNA gene. After fermentation, the antimicrobial activities of the secondary metabolites of Bacillus was determined by using 4 strains of common animal pathogenic bacteria, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The fermented products of strains were analyzed by High Performance Liquid Chromatography-Mass Spectrometry. The results showed that 47 isolates from 9 lake samples were identified as Bacillus, and 13 of which were found to have antimicrobial activities by producing the lipopeptide antibiotics. This study expands the current understanding of Bacillus species resources, lays a theoretical foundation for further studies on the secondary metabolites of Bacillus, and also opens a new avenue for the discovery of antibiotics against animal pathogens.
2019,38(6): 686-694 收稿日期:2019-01-27
胡燕, 白继庚, 胡先明, 等. 2013. 我国抗生素滥用现状、原因及对策探讨[J]. 中国社会医学杂志, 30(2):128-130.
李红亚, 李术娜, 王树香, 等. 2017. 益生芽孢杆菌脂肽类抑菌成分的高效液相色谱-电喷雾串联质谱分析[J]. 动物营养学报, 29(4):1191-1197.
罗楚平, 刘邮洲, 吴荷芳, 等. 2011. 脂肽类化合物 bacillomycin L抗真菌活性及其对水稻病害的防治[J]. 中国生物防治学报, 27(1):76-81.
谭悠久, 彭祎, 黄永春. 2011. 土壤放线菌的选择性分离及其代谢产物抗菌活性评价[J]. 植物保护, 37(1):120-123.
叶小兰, 杨倩. 2011. 枯草芽孢杆菌在防御动物疾病中的研究进展[J]. 中国兽医科学, 41(9):985-988.
Aarrebola E, Jacobs R, Korsten L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens[J]. Journal of Applied Microbiology, 108(2):386-395.
Bowman JP. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surtaces of Antarctic algae, and reclassification of Cytophaga uliginosa (Zobell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 50(5):1861-1868.
Chen XH, Vater J, Piel J, et al. 2006. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens strains FZB42[J]. Journal of Bacteriology, 188(11):4024-4036.
Cui XL, Mao PH, Zeng M, et al. 2001. Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 51:357-363.
Gordillo MA, Maldonado MC. 2012. Purification of peptides from Bacillus strains with biological activity[J]. Chromatography and Its Applications, 11:201-225.
Koumoutsi A, Chen XH, Henne A, et al. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42[J]. Journal of Bacteriology, 186(4):1084-1096.
Kumar S, Stecher G, Tamura K. 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7):1870-1874.
Luo C, Liu X, Zhou H, et al. 2015. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions[J]. Applied and Environmental Microbiology, 81(1):422-431.
Meena KR, Kanwar SS. 2015. Lipopeptides as the antifungal and antibacterial agents:applications in food safety and therapeutics[J]. BioMed Research International:473050. DOI:10.1155/2015/473050.
Moyne AL, Cleveland TE, Tuzun S. 2004. Molecular characterization and analysis of the operon encoding the antifugal lipopeptide bacillomycin D[J]. FEMS Microbiology Letters, 234(1):43-49.
Olga G. 2017. Actinomycetes:still a source of novel antibiotics[J]. Natural Product Reports, 10:1-30.
Romero D, De Vicente A,Rakotoaly RH, et al. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca[J]. Molecular Plant-Microbe Interactions, 20(4):430-440.
Romero D, Pérez-García A, Rivera ME, et al. 2004. Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca[J]. Applied Microbiology and Biotechnology, 64:263-269.
Saitou N, Nei M. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 4(4):406-425.
Smibert RMKN. 1994. Phenotypic characterization[M]//Gerhardt P, Murray RGE, Wood WA, et al. Methods for general and molecular bacteriology. Washington DC:American Society for Microbiology.
Theuretzbacher U. 2013. Global antibacterial resistance:the never ending story[J]. Journal of Global Antimicrobial Resistance, 1(2):63-69.
Tsuge K, Akiyama T, Shoda M. 2001. Cloning, sequencing and characterization of the iturin A operon[J]. Journal of Bacteriology, 183(21):6265-6273.
Zeriouh H, Romero D, Garcia-Gutierrez L, et al.2011. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits[J]. Molecular Plant-Microbe Interactions, 24(12):1540-1552.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology