Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2019 Vol.38 No.4

Population Genetic Structure of Platorchestia japonica From Beijing and Its Adjacent Regions Based on COⅠ Gene Sequences
Author of the article:CUI Xinyu1, LIU Hongguang2, LI Shuqiang2*
Author's Workplace:1. The High School Affiliated to Renmin University of China, Beijing 100080, China;
2. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Key Words:Platorchestia japonica; COⅠ; phylogeny; genetic structure; genetic diversity
Abstract:Crustaceans of Platorchestia japonica have been investigated for their suitability to serve as indicators for the quality of water bodies, since they normally live along rivers and lakes. This study intends to explore the population genetics of P. japonica around Beijing and its adjacent regions. The mitochondrial COⅠ genes of 128 P. japonica individuals collected from 22 sampling sites were sequenced. Polymorphism analysis of P. japonica COⅠ gene showed that there were 567 conserved sites, 56 variable sites, and 38 parsimony informative sites. Genetic diversity analysis discovered 43 haplotypes, with haplotype diversity of 0.938 and nucleotide diversity of 0.011 72. Phylogenetic analyses using Maximum Likelihood, Bayesian methods and network analyses revealed that the haplotypes of P. japonica showed no apparent phylogeographic structure, but all haplotypes clustered into 2 clades. The results of molecular variance analyses approved that the genetic variation among the clades of P. japonica was significantly higher than that within clades, with a Fst value of 0.852 19. These findings provide a scientific basis for further studying the genetic structure of P. japonica in China.
2019,38(4): 402-407 收稿日期:2018-09-29
分类号:Q173;Q953
基金项目:国家自然科学基金项目(31772417)
作者简介:崔昕宇(2003-),女,高中生
*通信作者:李枢强,E-mail:lisq@ioz.ac.cn
参考文献:
白茜茜, 潘昭, 任国栋. 2018. 燕山-太行山区黑带食蚜蝇(双翅目:食蚜蝇科)谱系地理学分析[J]. 生态学杂志, 37(1):157-163.
董梦书, 杨琳, 陈祥盛, 等. 2017. 基于线粒体COⅠ基因部分序列的缅甸安小叶蝉地理种群遗传多样性研究[J]. 四川动物, 36(3):277-283.
李大命, 张彤晴, 唐晟凯, 等. 2018. 基于线粒体Cyt b基因和D-loop区序列的洪泽湖湖鲚遗传多样性分析[J]. 江苏农业科学, 46(20):36-39.
杨璐, 侯仲娥, 李枢强. 2013. 海侵驱动的生物多样性增加[J]. 动物分类学报, 38(4):901-903.
Cheng YT, Nakazono K, Lin YK, et al. 2011. Cryptic diversity of the semi-terrestrial amphipod Platorchestia japonica (Tattersall, 1922)(Amphipoda:Talitrida:Talitridae) in Japan and Taiwan with description of a new species[J]. Zootaxa, 2787:1-18.
Costa FO, de Waard JR, Boutillier J, et al. 2007. Biological identifications through DNA barcodes:the case of the Crustacea[J]. Canadian Journal of Fisheries and Aquatic Sciences, 64(2):272-295.
Duan Y, Guttman SI, Oris JT, et al. 2000. Genotype and toxicity relationships among Hyalella azteca:Ⅱ. Acute exposure to fluoranthene-contaminated sediment[J]. Environmental Toxicology and Chemistry, 19(5):1422-1426.
Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 10(3):564-567.
Folmer O, Black M, Hoeh W, et al. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit Ⅰ from diverse metazoan invertebrates[J]. Molecular Marine Biology and Biotechnology, 3(5):294-299.
Hou Z, Li S. 2003. Terrestrial talitrid amphipods (Crustacea:Amphipoda) from China and Vietnam:studies on the collection of IZCAS[J]. Journal of Natural History, 37(20):2441-2460.
Kumar S, Stecher G, Tamura K. 2016. MEGA 7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7):1870-1874.
Leigh JW, Bryant D. 2015. POPART:full-feature software for haplotype network construction[J]. Methods in Ecology and Evolution, 6(9):1110-1116.
Maddison DR, Maddison WP. 2000. MacClade 4:analysis of phylogeny and character evolution[M]. Sunderland, MA:Sinauer Associates.
Posada D. 2008. jModelTest:phylogenetic model averaging[J]. Molecular Biology Evolution, 25:1253-1256.
Ronquist F, Teslenko M, van der Mark P, et al. 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 61:539-542.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, et al. 2017. DnaSP v6:DNA sequence polymorphism analysis of large datasets[J]. Molecular Biology and Evolution, 34:3299-3302.
Silvestro D, Michalak I. 2012. raxmlGUI:a graphical front-end for RAxML[J]. Organisms, Diversity & Evolution, 12:335-337.
Yang L, Hou Z, Li S. 2013. Marine incursion into east Asia:a forgotten driving force of biodiversity[J]. Proceedings of the Royal Society B, 280(1757):20122892. DOI:10.1098/rspb.2012.2892.
Wright S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating[J]. Evolution, 19(3):395-420.
CopyRight©2019 Editorial Office of Sichuan Journal of Zoology