Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2019 Vol.38 No.3

Preliminary Observation on Behavioral Rhythm of Naemorhedus griseus in Inner Mongolia Saihanwula National Nature Reserve
Author of the article:YANG Jing1, CHEN Zhaojuan2, WU Liji2, WANG Xiaoling2, MU Liguang2, XIANG Changlin2, LIU Bo2, CHEN Chen1, BAO Weidong1*
Author's Workplace:1. College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
2. Inner Mongolia Saihanwula National Nature Reserve Administration, Daban, Inner Mogolia Autonomous Region 025150, China
Key Words:Naemorhedus griseus; behavior ethogram; infrared camera; predation risk; Inner Mongolia Saihanwula National Nature Reserve
Abstract:Animal behavior is the holistic response of individuals to the changes of external environments and intrinsic physiological processes. Behavioral rhythm is an important behavioral trait in understanding the influences of external temporal and spatial factors on animal activity. In this study, we investigated the behavioral rhythm of an isolated Chinese goral (Naemorhedus griseus) population by direct observation and infrared cameras in Inner Mongolia Saihanwula National Nature Reserve from September 2015 to December 2016. The results revealed that the behaviors of N. griseus could be divided into 7 categories including 27 specific behavioral contents, and the behavioral pattern was established by describing each activity content. The behavioral rhythm of N. griseus showed monthly changes with the highest proportion of feeding in November, while the proportion of standing appeared most in August. The highest proportion of moving behavior was observed in December, and the estrus behavior appeared occasionally in October and December. These findings indicated that the behavioral characteristics of N. griseus were effectively adapted to the local environmental conditions and predation risk, and thus had a guiding role for further species conservation and recovery of isolated Chinese goral population.
2019,38(3): 256-262 收稿日期:2018-09-25
分类号:Q959.8;Q958.1
基金项目:国家林业局野生动植物保护与自然保护区管理司项目(2015071402)
作者简介:杨婧,女,硕士研究生,研究方向为野生动物生态学,E-mail:yangjing201777@163.com
*通信作者:鲍伟东,E-mail:wdbao@bjfu.edu.cn
参考文献:
边疆晖, 樊乃昌. 1997. 捕食风险与动物行为及其决策的关系[J]. 生态学杂志, 16(1):34-39.
郭松涛, 余玉群, 李保国, 等. 2003. 天山盘羊秋季集群习性和日活动节律初步观察[J]. 兽类学报, 23(1):27-30.
侯晓云. 2014. 丰容对圈养赤斑羚行为的影响[D]. 哈尔滨:东北林业大学.
蒋志刚, 江建平, 王跃招, 等. 2016. 中国脊椎动物红色名录[J]. 生物多样性, 24(5):501-551.
李桂林. 2005. 赛罕乌拉自然保护区志[M]. 赤峰:内蒙古科学技术出版社.
李佳, 刘芳, 叶立新, 等. 2018. 利用红外相机调查浙江省凤阳山兽类和鸟类多样性[J]. 兽类学报, 38(1):95-103.
李忠秋. 2016. 三种珍稀有蹄类动物的警戒行为数据[J]. 生物多样性, 24(12):1335-1340.
连新明, 李晓晓, 颜培实, 等. 2012. 夏季可可西里雌性藏原羚行为时间分配及活动节律[J]. 生态学报, 32(3):663-670.
刘雪华, 武鹏峰, 何祥博, 等. 2018. 红外相机技术在物种监测中的应用及数据挖掘[J]. 生物多样性, 26(8):850-861.
刘振生, 王小明, 曹丽荣. 2005. 圈养条件下岩羊冬季昼间的行为及活动规律[J]. 东北林业大学学报, 33(1):41-43.
路纪琪, 张知彬. 2004. 捕食风险及其对动物觅食行为的影响[J]. 生态学杂志, 23(2):66-72.
孙立新, 盛和林. 1989. 红斑羚和斑羚几种常见行为的比较观察[J]. 动物学杂志, 24(3):52-54.
王爱善, 侯晓云, 刘振生, 等. 2014. 圈养红斑羚冬季活动节律及活动时间分配[J]. 经济动物学报, 18(2):69-72.
王应祥. 2003. 中国哺乳动物种和亚种分类目录与分布大全[M]. 北京:中国林业出版社.
魏万红, 杨生妹, 樊乃昌, 等. 2004. 动物觅食行为对捕食风险的反应[J]. 动物学杂志, 39(3):84-90.
吴建平, 单继红, 王志平. 2005. 小兴安岭通河林区斑羚冬季食性分析[J]. 动物学杂志, 40(4):40-44.
谢燕. 2006. 圈养条件下赤斑羚发情期行为研究[D]. 上海:华东师范大学.
张晋东, 李玉杰, 黄金燕, 等. 2018. 利用红外相机建立野生水鹿行为谱及PAE编码系统[J]. 兽类学报, 38(1):1-11.
张帅. 2014. 存在猞猁捕食风险下西伯利亚狍的家域与生境利用研究[D]. 北京:北京林业大学.
赵玉泽, 王志臣, 徐基良, 等. 2013. 利用红外照相技术分析野生白冠长尾雉活动节律及时间分配[J]. 生态学报, 33(19):6021-6027.
郑建清. 2011. 圈养条件下赤斑羚夏季昼间行为时间分配及活动规律[J]. 野生动物学报, 32(5):249-251.
周许伟. 2015. 基于粪样DNA的两个中华斑羚种群保护遗传学初步研究[D]. 北京:北京林业大学.
Abáigar T, Cano M, Ensenyat C. 2018. Time allocation and patterns of activity of the dorcas gazelle (Gazella dorcas) in a sahelian habitat[J]. Mammal Research, 63(6):1-10.
Bednekoff PA, Lima SL. 2004. Risk allocation and competition in foraging groups:reversed effects of competition if group size varies under risk of predation[J]. Proceeding of the Royal Society B:Biological Science, 271(1547):1491-1496.
Bocedi G, Zurell D, Reineking B, et al. 2014. Mechanistic modelling of animal dispersal offers new insights into range expansion dynamics across fragmented landscapes[J]. Ecography, 37(12):1240-1253.
Carbone C, Christie S, Conforti K, et al. 2001. The use of photographic rates to estimate densities of tigers and other cryptic mammals[J]. Animal Conservation, 4(1):75-79.
Karanth KU, Nichols JD. 1998. Estimation of tiger densities in India using photographic captures and recaptures[J]. Ecology, 79(8):2852-2862.
Latham ADM, Latham MC, Dan H, et al. 2018. Assessing the efficacy of aerial culling of introduced wild deer in New Zealand with analytical decomposition of predation risk[J]. Biological Invasions, 20(1):251-266.
Li S, Mcshea WJ, Wang D, et al. 2010. The use of infrared triggered cameras for surveying phasianids in Sichuan province, China[J]. IBIS, 152(2):299-309.
March CW. 1981. Time budgets of Tana River red colobus[J]. Folia Primatologica, 35(1):30-50.
Mendoza E, Martineau PR, Brenner E, et al. 2011. A novel method to improve individual animal identification based on camera-trapping data[J]. Journal of Wildlife Management, 75(4):973-979.
O'Connell AF, Nichols JD, Karanth KU. 2011. Camera traps in animal ecology[M]. New York:Springer.
Pelletier F, Festa-Bianchet M. 2004. Effects of body mass, age, dominance and parasite load on foraging time of bighorn rams, Ovis canadensis[J]. Behavioral Ecology and Sociobiology, 56(6):546-551.
Pettorelli N, Lobora AL, Msuha MJ, et al. 2010. Carnivore biodiversity in Tanzania:revealing the distribution patterns of secretive mammals using camera traps[J]. Animal Conservation, 13(2):131-139.
Rowcliffe JM, Kays R, Kranstauber B, et al. 2015. Quantifying levels of animal activity using camera trap data[J]. Methods in Ecology & Evolution, 5(11):1170-1179.
Schipper J. 2007. Camera-trap avoidance by Kinkajous (Potos flavus):rethinking the "non-invasive" paradigm[J]. Small Carnivore Conservation, 36:38-41.
Trolle M, Kéry M. 2003. Estimation of ocelot density in the Pantanal using capture-recapture analysis of camera-trapping data[J]. Journal of Mammalogy, 84(2):607-614.
CopyRight©2019 Editorial Office of Sichuan Journal of Zoology