刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610065
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2021年第40卷第6期

饥饿胁迫下剑尾鱼肝脏代谢组学研究
Metabolomics of Xiphophorus helleri Liver Under Starvation Stress
张彦坤1, 杨兵坤1, 李航宇1, 胡林勇2, 赵新全2, 徐世晓2, 孙平1*
点击:197次 下载:26次
DOI:10.11984/j.issn.1000-7083.20210058
作者单位:1. 河南科技大学动物科技学院, 河南洛阳 471003;
2. 中国科学院西北高原生物研究所, 西宁 810008
中文关键字:剑尾鱼;饥饿;代谢组学;肝脏
英文关键字:Xiphophorus helleri; starvation; metabolomics; liver
中文摘要:饥饿胁迫对水生生物是一个十分普遍的现象,无论是环境变化或者是生殖洄游,诸多因素都会造成饥饿胁迫。为了探究饥饿胁迫对水生动物肝脏的影响,运用LC-MS代谢组学研究经过14 d饥饿胁迫后剑尾鱼Xiphophorus helleri肝脏内源性代谢物的变化,寻找差异代谢物以及相关的代谢通路。实验分为2组(对照组和饥饿组),每组24尾,对照组每日正常喂食,饥饿组禁食,共14 d。与对照组相比,饥饿组共筛选出8种具有显著性差异的代谢物:D-甘露糖、α-D-半乳糖、蔗糖、亚油酸、L-精氨酸、D-葡萄糖、牛磺酸和脱氧肌苷,共涉及 8条代谢通路,即ABC转运蛋白、半乳糖代谢、淀粉和蔗糖代谢、不饱和脂肪酸的生物合成、氨基糖和核苷酸糖代谢、氨基酸的生物合成、牛磺酸和牛磺酸代谢、嘌呤代谢。根据差异代谢物的生理功能和其涉及的代谢通路,推测饥饿胁迫主要通过影响剑尾鱼肝脏中的糖代谢、脂代谢和氨基酸代谢影响其免疫、抗炎症以及抗氧化能力。
英文摘要:Starvation stress caused by either environmental change or reproductive migration is common for aquatic organisms. In order to explore the effect of starvation stress on the liver of aquatic animals, LC-MS-based metabolomic method was used to study the changes of endogenous metabolites in the liver of swordtail fish (Xiphophorus helleri) after 14 days of starvation stress, and to identify different metabolites and related metabolic pathways. The swordtail fish of control group was fed normally every day, and the starvation group was starved for 14 days. The results showed that compared with the control group, 8 kinds of metabolites were significantly changed in the starvation group. Specifically, linoleic acid was increased, whereas D-mannose, taurine, α-D-galactose, sucrose, L-arginine, D-glucose, and deoxyinosine were significantly decreased. A total of 8 metabolic pathways including ABC transporters, galactose metabolism, starch and sucrose metabolism, biosynthesis of unsaturated fatty acids, amino sugar and nucleotide sugar metabolism, biosynthesis of amino acids, taurine and hypotaurine metabolism, and purine metabolism were involved in this process. In conclusion, it is predicted that starvation stress would influence the carbohydrate, lipid, and amino acid metabolism of liver, thereby influencing the immunity, anti-inflammatory, and antioxidant capacity of X. helleri.
2021,40(6): 611-621 收稿日期:2021-02-24
分类号:Q958.12
基金项目:十二五国家科技支撑计划项目(2014BAC05B04-04);青海省重点研发与转化计划项目(219-NK-173);河南省自然科学基金项目(182300410119);河南科技大学大学生研究训练计划项目(2020363)
作者简介:张彦坤(1992-),硕士研究生,主要研究方向为水生毒理学,E-mail:1029263033@qq.com
*通信作者:孙平,E-mail:pingsunny@msn.com
参考文献:
付世建, 邓利, 张文兵, 等. 1999. 南方鲇幼鱼胃和肝脏的组织结构及其在饥饿过程中的变化[J]. 西南师范大学学报(自然科学版), 24(3):336-342.
韩凤禄, 张琴, 黄国强, 等. 2016. 斜带石斑鱼幼鱼的饲料精氨酸需求量[J]. 中国水产科学, 23(3):584-593.
马宏峰. 2007. 亚油酸对高脂小鼠脂质代谢的影响及其机制研究[D]. 合肥:合肥工业大学.
石立冬, 翟浩杰, 卫力博, 等. 2020. 牛磺酸对红鳍东方鲀热应激转录调控机制的影响[J]. 中国水产科学, 27(10):1145-1155.
宋昭彬, 何学福. 1998. 鱼类饥饿研究现状[J]. 动物学杂志, 33(1):48-52.
覃川杰, 邵婷, 杨洁萍, 等. 2015. 饥饿胁迫对瓦氏黄颡鱼脂肪代谢的影响[J]. 水生生物学报, 39(1):58-65.
田芊芊, 胡毅, 毛盼, 等. 2016. 低鱼粉饲料中添加牛磺酸对青鱼幼鱼生长、肠道修复及抗急性拥挤胁迫的影响[J]. 水产学报, 40(9):1330-1339.
万军利, 麦康森, 艾庆辉. 2006. 鱼类精氨酸营养生理研究进展[J]. 中国水产科学, 13(4):679-685.
王莹, 姜廷波, 孙泽威. 2017. L-精氨酸代谢产物对动物营养调控的研究进展[J]. 中国畜牧杂志, 53(3):13-17.
吴淑勤, 黄志斌, 石存斌, 等. 2005. 水生实验动物——剑尾鱼[M]. 北京:中国农业出版社.
Aliko V, Qirjo M, Sula E, et al. 2018. Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment[J]. Fish & Shellfish Immunology, 76:101-109.
Alonso S, Castro MC, Berdasco M, et al. 2019. Isolation and partial characterization of lactic acid bacteria from the gut microbiota of marine fishes for potential application as probiotics in aquaculture[J]. Probiotics and Antimicrobial Proteins, 11(2):569-579.
Balaban RS, Nemoto S, Finkel T. 2005. Mitochondria, oxidants, and aging[J]. Cell, 120(4):483-495.
Bar N. 2014. Physiological and hormonal changes during prolonged starvation in fish[J]. Canadian Journal of Fisheries and Aquatic Sciences, 71(10):1447-1458.
Barcellos LJG, Marqueze A, Trapp M, et al. 2010. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen[J]. Aquaculture, 300(1):231-236.
Berge AC, Wierup M. 2012. Nutritional strategies to combat Salmonella in mono-gastric food animal production[J]. Animal, 6(4):557-564.
Bhattacharyya A, Chattopadhyay R, Mitra S, et al. 2014. Oxidative stress:an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J]. Physiological Reviews, 94(2):329-354.
Fan XT, Cui L, Hou TT, et al. 2021. Stress responses of testicular development, inflammatory and apoptotic activities in male zebrafish (Danio rerio) under starvation[J/OL]. Developmental and Comparative Immunology, 114:103833[2020-11-24]. https://doi.org/10.1016/j.dci.2020.103833.
Fast MD, Hosoya S, Johnson SC, et al. 2008. Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short-and long-term stress[J]. Fish & Shellfish Immunology, 24(2):194-204.
Gao L, Yuan ZH, Zhou T, et al. 2019. FOXO genes in channel catfish and their response after bacterial infection[J]. Developmental and Comparative Immunology, 97:38-44.
Gross DN, van Den Heuvel APJ, Birnbaum MJ. 2008. The role of FoxO in the regulation of metabolism[J]. Oncogene, 27(16):2320-2336.
Hall RK, Yamasaki T, Kucera T, et al. 2000. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins[J]. Journal of Biological Chemistry, 275(39):30169-30175.
Han J, Fang ZQ. 2010. Estrogenic effects, reproductive impairment and developmental toxicity in ovoviparous swordtail fish (Xiphophorus helleri) exposed to perfluorooctane sulfonate (PFOS)[J]. Aquatic Toxicology, 99(2):281-290.
Humphrey BD, Klasing KC. 2004. Modulation of nutrient metabolism and homeostasis by the immune system[J]. World's Poultry Science Journal, 60(1):90-100.
Hung SSO, Liu W, Li HB, et al. 1997. Effect of starvation on some morphological and biochemical parameters in white sturgeon, Acipenser transmontanus[J]. Aquaculture, 151:357-363.
Hur JW, Jo JH, Park IS. 2006. Effects of long-term starvation on hepatocyte ultrastructure of olive flounder Paralichthys olivaceus[J]. Ichthyological Research, 53(3):306-310.
Jenne CN, Kubes P. 2013. Immune surveillance by the liver[J]. Nature Immunology, 14(10):996-1006.
Jiao S, Nie MM, Song HB, et al. 2020. Physiological responses to cold and starvation stresses in the liver of yellow drum (Nibea albiflora) revealed by LC-MS metabolomics[J/OL]. Science of the Total Environment, 715:136940[2020-11-24]. https://doi.org/10.1016/j.scitotenv.2020.136940.
Kohl KD, Amaya J, Passement CA, et al. 2014. Unique and shared responses of the gut microbiota to prolonged fasting:a comparative study across five classes of vertebrate hosts[J]. FEMS Microbiology Ecology, 90(3):883-894.
Li TT, Qi MT, Gatesoupe FJ, et al. 2019. Adaptation to fasting in crucian carp (Carassius auratus):gut microbiota and its correlative relationship with immune function[J]. Microbial Ecology, 78(1):6-19.
Liu XC, Shi HR, He Q, et al. 2020. Effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in hybrid grouper (Epinephelus fuscoguttatus ♀×E. lanceolatus ♂)[J]. Fish & Shellfish Immunology, 97:182-193.
Long SM, Tull DL, de Souza DP, et al. 2020. Metabolomics provide sensitive insights into the impacts of low level environmental contamination on fish health-a pilot study[J/OL]. Metabolites, 10(1):24[2021-01-20]. https://www.doi.org.10.3390/metabo10010024.
Martin SA, Douglas A, Houlihan DF, et al. 2010. Starvation alters the liver transcriptome of the innate immune response in Atlantic salmon (Salmo salar)[J]. BMC Genomics, 11(1):418-437.
Park IS, Hur JW, Choi JW. 2012. Hematological responses, survival, and respiratory exchange in the olive flounder,Paralichthys olivaceus, during starvation[J]. Asian-Australasian Journal of Animal Sciences, 25(9):1276-1284.
Peter M, Lv HR, Jiang XQ, et al. 2020. Effects of starvation on enzyme activities and intestinal microflora composition in loach (Paramisgurnus dabryanus)[J/OL]. Aquaculture Reports, 18:100467[2020-11-24]. https://doi.org/10.1016/j.aqrep.2020.100467.
Rios FS, Kalinin AL, Fernandes MN, et al. 2004. Changes in gut gross morphology of traíra, Hoplias malabaricus (Teleostei, Erythrinidae) during long-term starvation and after refeeding[J]. Brazilian Journal of Biology, 64(3b):683-689.
Robinson MW, Harmon C, O'Farrelly C. 2016. Liver immunology and its role in inflammation and homeostasis[J]. Cellular & Molecular Immunology, 13:267-276.
Sakyi ME, Cai J, Tang JF, et al. 2020. Effects of starvation and subsequent re-feeding on intestinal microbiota, and metabolic responses in nile tilapia, Oreochromis niloticus[J/OL]. Aquaculture Reports, 17:100370[2020-11-24]. https://doi.org/10.1016/j.aqrep.2020.100370.
Sire MF, Vernier JM. 1992. Intestinal absorption of protein in teleost fish[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 103(4):771-781.
Soltanian S, Gholamhosseini A. 2019. The effects of starvation on some epidermal mucus immune parameters in rainbow trouts[J]. International Journal of Aquatic Biology, 7(5):291-300.
Talloczy Z, Jiang WX, Virgin HW, et al. 2002. Regulation of starvation-and virus-induced autophagy by the eIF2α kinase signaling pathway[J]. Proceedings of the National Academy of Sciences, 99(1):190-195.
Tran NT, Xiong F, Hao YT, et al. 2018. Starvation influences the microbiota assembly and expression of immunity-related genes in the intestine of grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 489:121-129.
van Der Heide LP, Hoekman MFM, Smidt MP. 2004. The ins and outs of FoxO shuttling:mechanisms of FoxO translocation and transcriptional regulation[J]. Biochemical Journal, 380(2):297-309.
van Immerseel F, Cauwerts K, Devriese LA, et al. 2002. Feed additives to control Salmonella in poultry[J]. World's Poultry Science Journal, 58(4):501-513.
Zeng LQ, Li FJ, Li XM, et al. 2012. The effects of starvation on digestive tract function and structure in juvenile southern catfish (Silurus meridionalis Chen)[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 162(3):200-211.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准连续出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2022四川动物》编辑部 蜀ICP备08107403号-3
您是本站第11088212名访问者

川公网安备 51010702000173号