电话:028-85410485; 15881112385
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q


Cloning and Polymorphism of Agouti Gene and Its Expression in Different Skin Color Phenotypes in Andrias davidianus
姜维, 邓捷, 王启军, 赵虎, 孔飞, 张红星*
点击:1079次 下载:1次
作者单位:陕西省动物研究所, 陕西省秦岭珍稀濒危动物保育重点实验室, 西安 710032
英文关键字:Andrias davidianus; body color; melanin; Agouti gene; expression
中文摘要:刺鼠信号蛋白(Agouti)是哺乳动物和鸟类黑色素合成过程中的重要调控因子,影响动物的体色(毛色)。为研究Agouti在两栖动物体色形成过程中的作用,本研究利用PCR技术扩增得到大鲵Andrias davidianusAgouti基因部分cDNA序列并进行了相关的生物信息学分析,进一步使用实时荧光定量PCR检测了大鲵Agouti基因在皮肤、肝脏等10个组织和器官中的表达情况,并检测了4种不同体色大鲵皮肤组织中Agouti基因的表达量。同时采用直接测序法,比较了不同体色大鲵Agouti基因编码区的序列差异。结果显示,大鲵Agouti基因cDNA序列长1 068 bp,开放阅读框399 bp,编码132个氨基酸残基。蛋白质同源性分析表明,大鲵Agouti蛋白具有与其他物种一致的保守Agouti结构域,其蛋白质序列与两栖爬行类序列相似性较高,与哺乳动物和鸟类相似性较低。系统进化分析显示,大鲵Agouti基因与高山倭蛙Nanorana parkeri、美国短吻鳄Alligator mississippiensis、中华鳖Pelodiscus sinensis等物种的亲缘关系较近。实时荧光定量PCR分析表明,Agouti基因mRNA在大鲵不同组织中均有表达,皮肤中的表达量最高。在4种不同体色大鲵皮肤组织中,黄色皮肤中的Agouti基因表达量高于其他体色。不同体色大鲵Agouti基因编码区序列一致。大鲵Agouti基因独特的序列特征及其表达的组织特异性暗示了其在两栖动物体色形成过程中可能具有与其他物种不同的调控机制。这些结果为进一步研究Agouti在大鲵体色形成过程中的作用提供了基础资料。
英文摘要:Agouti protein is one of key regulatory factors involving in melanin biosynthesis of mammals and birds and plays a role in animal skin color formation. To investigate the relationship between Agouti gene and skin color formation of amphibians, the Agouti gene of giant salamander (Andrias davidianus) was cloned by PCR followed by sequence characterization using bioinformatics tools. Meanwhile, the expression patterns of Agouti gene in 10 different tissues and in 4 types of skin color phenotypes were detected by quantitative real-time PCR. Furthermore, nucleotide mutation sites of Agouti gene were explored by direct DNA sequencing. The obtained Agouti cDNA was 1 068 bp in length and contained a 399 bp open reading frame encoding a peptide of 132 amino acids. Sequence analysis predicted that Agouti of A. davidianus had a conserved Agouti domain. Multiple sequence alignment showed that Agouti of A. davidianus had high amino acids similarity with amphibians and reptiles, but had low similarity with mammals and birds. These results were further confirmed by phylogenetic tree analysis. Quantitative expression analysis showed that Agouti mRNA expressed in all the tested tissues of A. davidianus, and among of which, the maximum expression level was detected in skin. Besides, the expression of Agouti gene in yellow skin was significantly higher than that in other colors of skins. Polymorphism analysis revealed that the cDNA sequences of Agouti genes in A. davidianus were totally identical among different skin color phenotypes. The specific sequence characteristics and expression pattern of Agouti gene in A. davidianus suggested that there might be different regulatory mechanisms of this gene in skin color formation compared with other species. These findings provide helpful information for further studying the role of Agouti in skin color formation of A. davidianus.
2019,38(2): 121-129 收稿日期:2018-08-21
吴伟伟. 2013. 山羊agouti基因5'UTR变异及ASIP蛋白表达定位研究[D]. 保定:河北农业大学.
张天, 张丽英, 李详龙, 等. 2014. 不同毛色山羊皮肤组织Agouti基因mRNA及其编码ASIP差异表达研究[J]. 畜牧兽医学报, 45(12):1932-1938.
Badaoui B, D'Andrea M, Pilla F, et al. 2011. Polymorphism of the goat agouti signaling protein gene and its relationship with coat color in Italian and Spanish breeds[J]. Biochemical Genetics, 49(7-8):523-532.
Bagnara JT, Hadley ME. 1969. The control of bright colored pigment cells of fishes and amphibians[J]. American Zoologist, 9(2):465-478.
Beukema W, Nicieza AG, Lourenço A, et al. 2016. Colour polymorphism in Salamandra salamandra (Amphibia:Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes[J]. Journal of Zoological Systematics & Evolutionary Research, 54(2):127-136.
Bultman SJ, Michaud EJ, Woychik RP. 1992. Molecular characterization of the mouse agouti locus[J]. Cell, 71(7):1195-1204.
Dinulescu DM, Cone RD. 2000. Agouti and agouti-related protein:analogies and contrasts[J]. The Journal of Biological Chemistry, 275(10):6695-6698.
Duellman WE, Trueb L. 1986. Biology of amphibians[M]. New York:McGraw-Hill Book Co.
Fontanesi L,Beretti F, Riggio V, et al. 2009. Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors[J]. Cytogenet Genome Research, 126(4):333-347.
Frost SK, Epp LG, Robinson SJ. 1984. The pigmentary system of developing axolotls. Ⅰ. A biochemical and structural analysis of chromatophores in wild-type axolotls[J]. Journal of Embryology & Experimental Morphology, 81(1):105.
Garcia-Borron JC, Sanchez-Laorden BL, Jimenez-Cervantes C. 2005. Melanocortin-1 receptor structure and functional regulation[J]. Pigment Cell Research, 18(6):393-410.
Han JL, Yang M, Yue YJ, et al. 2015. Analysis of agouti signaling protein (ASIP) gene polymorphisms and association with coat color in Tibetan sheep (Ovis aries)[J]. Genetics Molecular Research, 14(1):1200-1209.
Herczeg G, Matsuba C, Merilä J. 2010. Sequence variation in the melanocortin-1 receptor gene (Mc1r) does not explain variation in the degree of melanism in a widespread amphibian[J]. Annales Zoologici Fennici, 47(1):37-45.
Hoekstra HE. 2006. Genetics, development and evolution of adaptive pigmentation in vertebrates[J]. Heredity (Edinb), 97(3):222-234.
Jakubczak A, Gryzinska M, Horeckaet B, et al. 2016. Single-nucleotide polymorphism of MC1R, ASIP, and TYRP2 genes in wild and farmed foxes (Vulpes vulpes)[J]. Canadian Journal of Animal Science, 96(2):172-179.
Kambe Y, Tanikawa T, Matsumoto Y, et al. 2011. Origin of agouti-melanistic polymorphism in wild black rats (Rattus rattus) inferred from Mc1r gene sequences[J]. Zoological Science, 28:560-567.
Kindermann C, Hero JM. 2016. Pigment cell distribution in a rapid colour changing amphibian (Litoria wilcoxii)[J]. Zoomorphology, 135(2):1-7.
Kwon HY, Bultman SJ, Löffler C, et al. 1994. Molecular structure and chromosomal mapping of the human homolog of the agouti gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 91(21):9760-9764.
Miller MW, Duhl DM, Vrieling H, et al. 1993. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation[J]. Genes & Development, 7(3):454-467.
Mundy NI, Kelly J. 2003. Evolution of a pigmentation gene, the melanocortin-1 receptor, in primates[J]. American Journal of Physical Anthropology, 121(1):67-80.
Nadeau NJ, Minvielle F, Ito S, et al. 2008. Characterization of Japanese quail yellow as a genomic deletion upstream of the avian homolog of the mammalian ASIP (agouti) gene[J]. Genetics, 178(2):777-786.
Norris BJ, Whan VA. 2008. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep[J]. Genome Research, 18(8):1282-1293.
Obika M, Bagnara JT. 1964. Pteridines as pigments in amphibians[J]. Science, 143(3605):485-487.
Ollmann MM, Barsh GS. 1999. Down-regulation of melanocortin receptor signaling mediated by the amino terminus of agouti protein in Xenopus melanophore[J]. The Journal of Biological Chemistry, 274(22):15837-15846.
Robbins LS, Nadeau JH, Johnson KR, et al. 1993. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function[J]. Cell, 72:827-834.
Rudh A, Qvarnström A. 2013. Adaptive colouration in amphibians[J]. Seminars in Cell & Developmental Biology, 24(6-7):553-561.
Sakamoto T, Fawcett JA, Innan H. 2017. Evaluating the potential roles of the gray and extension loci in the coat coloration of thoroughbred racing horses[J]. Journal of Equine Science, 28(2):61-65.
Schiaffino MV. 2010. Signaling pathways in melanosome biogenesis and pathology[J]. The International Journal of Biochemistry & Cell Biology, 42(7):1094-1104.
Suzuki I, Tada A, Ollmann MM, et al. 1997. Agouti signaling protein inhibits melanogenesis and the response of human melanocytes to α-melanotropin[J]. Journal of Investigative Dermatology, 108(6):838-842.
Takeuchi S, Suzuki H, Yabuuchi M, et al. 1996. A possible involvement of melanocortin 1-receptor in regulating feather color pigmentation in the chicken[J]. Biochimica et Biophysica Acta, 1308:164-168.
Theron E, Hawkins K, Bermingham E, et al. 2001. The molecular basis of an avian plumage polymorphism in the wild:a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola[J]. Current Biology, 11:550-557.
Thibaudeau G, Altig R. 2012. Coloration of anuran tadpoles (Amphibia):development, dynamics, function, and hypotheses[J]. Journal of Mass Spectrometry, 48(1):1-15.
Wente WH, Phillips JB. 2003. Fixed green and brown color morphs and a novel color-changing morph of the Pacific tree frog Hyla regilla[J]. American Naturalist, 162(4):461-473.
Woodcock MR, Vaughn-Wolfe J, Elias A, et al. 2017. Identification of mutant genes and introgressed tiger salamander DNA in the laboratory axolotl, Ambystoma mexicanum[J]. Scientific Reports, 7(1):1-10.
Yasutomi M, Yamada S. 1998. Formation of the dermal chromatophore unit (DCU) in the tree frog Hyla arborea[J]. Pigment Cell Research, 11(4):198-205.
Yoshihara C, Fukao A, Ando K, et al. 2012. Elaborate color patterns of individual chicken feathers may be formed by the agouti signaling protein[J]. General and Comparative Endocrinology, 175:495-499.

      读者ID: 密码:   
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2020四川动物》编辑部 蜀ICP备08107403号

川公网安备 51010702000173号