电话:028-85410485; 15881112385
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q


Preliminary Research of microRNA in Periplaneta americana
宝钲1, 杨茗羽2, 张修月1, 岳碧松1,2,3, 范振鑫1*
点击:1153次 下载:0次
作者单位:1. 生物资源与生态环境教育部重点实验室, 四川大学生命科学学院, 成都 610065;
2. 四川药用动物工程技术研究中心, 四川西昌 615000;
3. 药用美洲大蠊四川省重点实验室, 成都 610031
英文关键字:Periplaneta americana; microRNA; differential expression
中文摘要:美洲大蠊Periplaneta americana是一种世界性的卫生害虫,但其提取物有较高的药用价值。本研究对饲养的雌雄美洲大蠊成虫进行microRNA测序,分别在雄性和雌性中得到12 155 616条和9 847 263条序列。序列长度主要为18~23 nt,且在22 nt和29 nt处有2个峰值。将所得序列与数据库(NCBI、Rfam)进行比对注释,最终在雄性成虫中鉴定到57种已知的microRNA和152种潜在的新microRNA,在雌性成虫中鉴定到53种已知的microRNA和94种潜在的新microRNA。差异表达分析发现只有一种microRNA:miR-750在雌雄之间差异表达,其在雌虫中表达量显著高于雄虫。本研究首次在基因组水平研究了美洲大蠊microRNA的组成并对其功能进行了预测,为其后续研究奠定了基础。
英文摘要:American cockroach (Periplaneta americana) is known as one of the public health pests worldwide. Meanwhile, its extracts are valuable for medical use. In this study, sequencing of microRNAs of the reared cockroaches was carried out. A total of 12 155 616 and 9 847 263 sequences were obtained from the male and female individuals, respectively. The length of sequences mainly ranged from 18 nt to 23 nt with a bimodal distribution at 22 nt and 29 nt. Annotation of these clean reads were performed according to databases of Rfam and NCBI by Blastn. Finally, 57 known microRNAs and 152 novel microRNAs were identified from the male group, while 53 known microRNAs and 94 novel microRNAs were identified from the female group. Differential expression analysis indicated that only one microRNA (miR-750) was significantly up-regulated in female P. americana compared to that of the male. This is the first study concerning on the composition and function of microRNAs in P. americana at genomic level, and thus lay a foundation for further study on P. americana.
2019,38(1): 47-55 收稿日期:2018-05-10
陈梦林. 2002. 蟑螂养殖技术[J]. 农村新技术, 10: 21-23.
晋家正, 李午佼, 牟必琴, 等. 2018. 药用美洲大蠊全基因组测序分析[J]. 四川动物, 37(2): 121-126.
王鹏飞, 许润春, 李江维, 等. 2015. 美洲大蠊油脂急性毒性及其拮抗美洲大蠊提取液肝脏保护作用的初步研究[J]. 现代中药研究与实践, 29(6): 34-36.
吴道勋, 邵维莉, 杨贤英, 等. 2016. 美洲大蠊抗肿瘤与免疫调节研究进展[J]. 亚太传统医药, 12(23): 48-51.
肖小芹, 汪世平, 徐绍锐, 等. 2007. 美洲大蠊提取物抗炎、镇痛作用的实验研究[J]. 中国病原生物学杂志, 2(2): 140-143.
张丹, 孙玉红, 李茂, 等. 2015. 美洲大蠊多肽提取物对荷瘤小鼠肿瘤生长及免疫功能的影响[J]. 中国新药杂志, 24(6): 681-686.
Bartel DP, Chen CZ. 2004. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs[J]. Nature Reviews Genetics, 5(5): 396-400.
Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 116(2): 281-297.
Belles X, Cristino AS, Tanaka ED, et al. 2012. Insect microRNAs: from molecular mechanisms to biological roles[M]. Gilbert LI. Insect molecular biology and biochemistry. New York: Academic Press: 30-56.
Brennecke J, Hipfner DR, Stark A, et al. 2003. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila[J]. Cell, 113(1): 25-36.
Chen Q, Lu L, Hua H, et al. 2012. Characterization and comparative analysis of small RNAs in three small RNA libraries of the brown planthopper (Nilaparvata lugens)[J]. PLoS ONE, 7(3): e32860. DOI: 10.1371/journal.pone.0032860.
Chen W, Jiang GF, Sun SH, et al. 2013. Identification of differentially expressed genes in American cockroach ovaries and testes by suppression subtractive hybridization and the prediction of its miRNAs[J]. Molecular Genetics and Genomics, 288(11): 627-638.
Chen W, Liu YX, Jiang GF. 2015. De novo assembly and characterization of the testis transcriptome and development of EST-SSR markers in the cockroach Periplaneta americana[J]. Scientific Reports, 5: 11144.
Cristino AS, Tanaka ED, Rubio M, et al. 2011. Deep sequencing of organ- and stage-specific microRNAs in the evolutionarily basal insect Blattella germanica (L.)(Dictyoptera, Blattellidae)[J]. PLoS ONE, 6(4): e19350. DOI: 10.1371/journal.pone.0019350.
Duisters RF, Tijsen AJ, Schroen B, et al. 2009. MiR-133 and miR-30 regulate connective tissue growth factor[J]. Circulation Research, 104(2): 170-178.
Enright AJ, John B, Gaul U, et al. 2003. MicroRNA targets in Drosophila[J]. Genome Biology, 5(1): R1.
Friedländer MR, Mackowiak SD, Li N, et al. 2011. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 40(1): 37-52.
He J, Chen Q, Wei Y, et al. 2016. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(3): 584-589.
Huang Y, Dou W, Liu B, et al. 2014. Deep sequencing of small RNA libraries reveals dynamic expression patterns of microRNAs in multiple developmental stages of Bactrocera dorsalis[J]. Insect Molecular Biology, 23(5): 656-667.
Jagadeeswaran G, Zheng Y, Sumathipala N, et al. 2010. Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel-pam microRNAs and microRNA-stars during silkworm development[J]. BMC Genomics, 11(1): 52.
Jiang L, Liu X, Xia CL,et al. 2012. Research advance on chemical constituents and anti-tumor effects of Periplaneta americana L.[J]. Medicinal Plant, 3(11): 95-97.
Kaewkascholkul N, Somboonviwat K, Asakawa S, et al. 2016. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection[J]. Developmental & Comparative Immunology, 60: 191-201.
Kanehisa M, Goto S, Sato Y, et al. 2012. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Research, 40(D1): D109-D114.
Karres JS, Hilgers V, Carrera I, et al. 2007. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila[J]. Cell, 131(1): 136-145.
Kawaoka S, Arai Y, Kadota K, et al. 2011. Zygotic amplification of secondary piRNAs during silkworm embryogenesis[J]. RNA, 17(7): 1401-1407.
Kawasaki H, Taira K. 2003. Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells[J]. Nature, 423(6942): 838-842.
Kim IW, Lee JH, Subramaniyam S, et al. 2016. De novo transcriptome analysis and detection of antimicrobial peptides of the American cockroach Periplaneta americana (Linnaeus)[J]. PLoS ONE, 11(5): e0155304. DOI: 10.1371/journal.pone.0155304.
Krüger J, Rehmsmeier M. 2006. RNAhybrid: microRNA target prediction easy, fast and flexible[J]. Nucleic Acids Research, 34(suppl_2): W451-W454.
Lee RC, Ambros V. 2001. An extensive class of small RNAs in Caenorhabditis elegans[J]. Science, 294(5543): 862-864.
Li S, Zhu S, Jia Q, et al. 2018. The genomic and functional landscapes of developmental plasticity in the American cockroach[J]. Nature Communications, 9(1): 1008.
Li ZQ, He P, Zhang YN, et al. 2017. Molecular and functional characterization of three odorant-binding protein from Periplaneta americana[J]. PLoS ONE, 12(1): e0170072. DOI: 10.1371/journal.pone.0170072.
Llave C, Xie Z, Kasschau KD, et al. 2002. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 297(5589): 2053-2056.
Lucas KJ, Roy S, Ha J, et al. 2015. MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(5): 1440-1445.
Lund AH. 2010. miR-10 in development and cancer[J]. Cell Death & Differentiation, 17(2): 209-214.
Moriya Y, Itoh M, Okuda S, et al. 2007. KAAS: an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 35(suppl_2): W182-W185.
Nishino H, Yoritsune A, Mizunami M. 2010. Postembryonic development of sexually dimorphic glomeruli and related interneurons in the cockroach Periplaneta americana[J]. Neuroscience Letters, 469(1): 60-64.
Paulo D, Azeredo-Espin A, Canesin L, et al. 2017. Identification and characterization of microRNAs in the screwworm flies Cochliomyia hominivorax and Cochliomyia macellaria (Diptera: Calliphoridae)[J]. Insect Molecular Biology, 26(1): 46-57.
Rebijith K, Asokan R, Hande HR, et al. 2016. The first report of mirnas from a Thysanopteran insect, Thrips palmi Karny using high-throughput sequencing[J]. PLoS ONE, 11(9): e0163635. DOI: 10.1371/journal.pone.0163635.
Reinhart BJ, Slack FJ, Basson M, et al. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 403(6772): 901-906.
Rubio M, Montañez R, Perez L, et al. 2013. Regulation of atrophin by both strands of the mir-8 precursor[J]. Insect Biochemistry and Molecular Biology, 43(11): 1009-1014.
Salama EM. 2015. A novel use for potassium alum as controlling agent against Periplaneta americana (Dictyoptera: Blattidae)[J]. Journal of Economic Entomology, 108(6): 2620-2629.
Skalsky RL, Vanlandingham DL, Scholle F, et al. 2010. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus[J]. BMC Genomics, 11(1): 119.
Slack FJ, Basson M, Liu ZC, et al. 2000. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor[J]. Molecular Cell, 5(4): 659-669.
Surridge AK, Lopez-Gomollon S, Moxon S, et al. 2011. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene[J]. BMC Genomics, 12(1): 62.
Tamaki FK, Pimentel AC, Dias AB, et al. 2014. Physiology of digestion and the molecular characterization of the major digestive enzymes from Periplaneta americana[J]. Journal of Insect Physiology, 70: 22-35.
Wang XY, He ZC, Song LY, et al. 2011. Chemotherapeutic effects of bioassay-guided extracts of the American cockroach, Periplaneta americana[J]. Integrative Cancer Therapies, 10(3): NP12-NP23.
Wei Y, Chen S, Yang P, et al. 2009. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust[J]. Genome Biology, 10(1): R6.
Wicher D, Söhler S, Gundel M, et al. 2006. Differential receptor activation by cockroach adipokinetic hormones produces differential effects on ion currents, neuronal activity, and locomotion[J]. Journal of Neurophysiology, 95(4): 2314-2325.
Yu X, Zhou Q, Li SC, et al. 2008. The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages[J]. PLoS ONE, 3(8): e2997. DOI: 10.1371/journal.pone.0002997.
Zhang J, Zhang Y, Li J, et al. 2016. Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: digestion, detoxification and oxidative stress response[J]. PLoS ONE, 11(5): e0155254. DOI:10.1371/journal.pone.0155254.
Zhang X, Zheng Y, Jagadeeswaran G, et al. 2012. Identification and developmental profiling of conserved and novel microRNAs in Manduca sexta[J]. Insect Biochemistry and Molecular Biology, 42(6): 381-395.
Zhang XD, Zhang YH, Ling YH, et al. 2013. Characterization and differential expression of microRNAs in the ovaries of pregnant and non-pregnant goats (Capra hircus)[J]. BMC Genomics, 14(1): 1.
Zhao Y, Srivastava D. 2007. A developmental view of microRNA function[J]. Trends in Biochemical Sciences, 32(4): 189-197.
Zhou Y, Liu Y, Yan H, et al. 2014. MiR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication[J]. Parasites & Vectors, 7(1): 488. DOI:10.11861s 13071-014-0488-4.

      读者ID: 密码:   
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2021四川动物》编辑部 蜀ICP备08107403号-3

川公网安备 51010702000173号